Skip to content

Commit

Permalink
Improve a proof
Browse files Browse the repository at this point in the history
  • Loading branch information
aisejohan committed Apr 1, 2016
1 parent 383bf74 commit 028112c
Showing 1 changed file with 21 additions and 17 deletions.
38 changes: 21 additions & 17 deletions modules.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2033,23 +2033,27 @@ \section{Closed immersions of ringed spaces}

\medskip\noindent
Let $\mathcal{G}$ be a $\mathcal{O}_X$-module with
$\mathcal{I}\mathcal{G} = 0$. If $x \in X$, $x \not \in i(Z)$, then
$\mathcal{G}_x = 0$ because $\mathcal{I}_x = \mathcal{O}_{X, x}$ in this
case. Thus we see that $\mathcal{G}$ us supported on $Z$.
By Lemma \ref{lemma-i-star-exact} we can write $\mathcal{G} = i_*\mathcal{F}$
for a unique abelian sheaf $\mathcal{F}$ on $Z$.
Let $W \subset Z$ be open, $f \in \mathcal{O}_Z(W)$ and $s \in \mathcal{F}(W)$.
We define $fs \in \mathcal{F}(W)$. Since $i^\sharp$ is surjective
we can find opens $U_j \subset X$ such that $W = \bigcup i^{-1}(U_j)$
and $f|{i^{-1}(U_j)}$ is the image of $f_j \in \mathcal{O}_X(U_j)$.
Note that $s|_{i^{-1}(U_j)}$ is an element of
$\mathcal{F}(i^{-1}(U_j)) = \mathcal{G}(U_i)$.
Thus we can form $s_j = f_js \in \mathcal{F}(i^{-1}(U_j)) = \mathcal{G}(U_i)$.
By our assumption that $\mathcal{I}\mathcal{G} = 0$
the sections $s_j$ are independent of the choice of $f_j$ lifting
$f|{i^{-1}(U_j)}$ and glue to a section $fs$ of $\mathcal{F}$ over $W$.
In this way $\mathcal{F}$ becomes an $\mathcal{O}_Z$-module
such that $\mathcal{G} \cong i_*\mathcal{F}$.
$\mathcal{I}\mathcal{G} = 0$. We will prove the canonical map
$$
\mathcal{G} \longrightarrow i_*i^*\mathcal{G}
$$
is an isomorphism. This proves that $\mathcal{G} = i_*\mathcal{F}$
with $\mathcal{F} = i^*\mathcal{G}$ which finishes the proof.
We check the displayed map induces an isomorphism on stalks.
If $x \in X$, $x \not \in i(Z)$, then $\mathcal{G}_x = 0$
because $\mathcal{I}_x = \mathcal{O}_{X, x}$ in this
case. As above $(i_*i^*\mathcal{G})_x = 0$ by
Sheaves, Lemma \ref{sheaves-lemma-stalks-closed-pushforward}.
On the other hand, if $x \in Z$, then we obtain the map
$$
\mathcal{G}_x
\longrightarrow
\mathcal{G}_x \otimes_{\mathcal{O}_{X, x}} \mathcal{O}_{Z, x}
$$
by Sheaves, Lemmas \ref{sheaves-lemma-stalk-pullback-modules} and
\ref{sheaves-lemma-stalks-closed-pushforward}. This map is an isomorphism
because $\mathcal{O}_{Z, x} = \mathcal{O}_{X, x}/\mathcal{I}_x$
and because $\mathcal{G}_x$ is annihilated by $\mathcal{I}_x$ by assumption.
\end{proof}


Expand Down

0 comments on commit 028112c

Please sign in to comment.