Skip to content

Commit

Permalink
Improve statement and clarify proof of lemma in coherent.tex
Browse files Browse the repository at this point in the history
  • Loading branch information
aisejohan committed Aug 28, 2014
1 parent 5990bee commit 4623bcc
Showing 1 changed file with 10 additions and 16 deletions.
26 changes: 10 additions & 16 deletions coherent.tex
Expand Up @@ -888,7 +888,7 @@ \section{Cohomology and base change, II}
\label{lemma-separated-case-relative-cech}
Let $f : X \to S$ be a morphism of schemes.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Assume $X$ and $S$ are quasi-compact and have affine diagonal
Assume $X$ is quasi-compact and $X$ and $S$ have affine diagonal
(e.g., if $X$ and $S$ are separated).
In this case we can compute $Rf_*\mathcal{F}$ as follows:
\begin{enumerate}
Expand Down Expand Up @@ -924,8 +924,8 @@ \section{Cohomology and base change, II}

\begin{proof}
Consider the resolution
$\mathcal{F} \to {\mathfrak C}^\bullet(\mathcal{U}, \mathcal{F})$ of
Cohomology, Lemma \ref{cohomology-lemma-covering-resolution}.
$\mathcal{F} \to {\mathfrak C}^\bullet(\mathcal{U}, \mathcal{F})$
of Cohomology, Lemma \ref{cohomology-lemma-covering-resolution}.
We have an equality of complexes
$\check{\mathcal{C}}^\bullet(\mathcal{U}, f, \mathcal{F}) =
f_*{\mathfrak C}^\bullet(\mathcal{U}, \mathcal{F})$
Expand All @@ -935,28 +935,22 @@ \section{Cohomology and base change, II}
are affine by Morphisms, Lemma \ref{morphisms-lemma-affine-permanence}.
Hence $R^qj_{i_0 \ldots i_p *}\mathcal{F}_{i_0 \ldots i_p}$
as well as $R^qf_{i_0 \ldots i_p *}\mathcal{F}_{i_0 \ldots i_p}$
are zero for $q > 0$. By
are zero for $q > 0$ (Lemma \ref{lemma-relative-affine-vanishing}).
Using $f \circ j_{i_0 \ldots i_p} = f_{i_0 \ldots i_p}$ and
the spectral sequence of
Cohomology, Lemma \ref{cohomology-lemma-relative-Leray}
we conclude that
$Rj_{i_0 \ldots i_p *}\mathcal{F}_{i_0 \ldots i_p} =
j_{i_0 \ldots i_p *}\mathcal{F}_{i_0 \ldots i_p}$ and
$Rf_{i_0 \ldots i_p *}\mathcal{F}_{i_0 \ldots i_p} =
f_{i_0 \ldots i_p *}\mathcal{F}_{i_0 \ldots i_p}$.
Using that $Rf_* \circ Rj_{i_0 \ldots i_p *} = Rf_{i_0 \ldots i_p *}$
(Cohomology, Lemma \ref{cohomology-lemma-higher-direct-images-compose})
we find that
$Rf_*j_{i_0 \ldots i_p *}\mathcal{F}_{i_0 \ldots i_p} =
f_{i_0 \ldots i_p *}\mathcal{F}_{i_0 \ldots i_p}$.
$R^qf_*(j_{i_0 \ldots i_p *}\mathcal{F}_{i_0 \ldots i_p}) = 0$
for $q > 0$.
Since the terms of the complex
${\mathfrak C}^\bullet(\mathcal{U}, \mathcal{F})$ are finite direct
sums of the sheaves $j_{i_0 \ldots i_p *}\mathcal{F}_{i_0 \ldots i_p}$
we conclude using Leray's acyclicity lemma
(Derived Categories, Lemma \ref{derived-lemma-leray-acyclicity})
that
$$
Rf_* \mathcal{F} =
Rf_*{\mathfrak C}^\bullet(\mathcal{U}, \mathcal{F}) =
f_*{\mathfrak C}^\bullet(\mathcal{U}, \mathcal{F})
Rf_* \mathcal{F} = f_*{\mathfrak C}^\bullet(\mathcal{U}, \mathcal{F}) =
\check{\mathcal{C}}^\bullet(\mathcal{U}, f, \mathcal{F})
$$
as desired.
\end{proof}
Expand Down

0 comments on commit 4623bcc

Please sign in to comment.