Skip to content

Commit

Permalink
Move some material on relative morphisms earlier
Browse files Browse the repository at this point in the history
Also expand a bit on when it is representable
  • Loading branch information
aisejohan committed Jul 2, 2015
1 parent 4088966 commit 56009ea
Show file tree
Hide file tree
Showing 3 changed files with 218 additions and 75 deletions.
82 changes: 8 additions & 74 deletions criteria.tex
Original file line number Diff line number Diff line change
Expand Up @@ -1212,6 +1212,10 @@ \section{Relative morphisms}
\label{section-relative-morphisms}

\noindent
We continue the discussion started in
\'Etale Morphisms, Section \ref{etale-section-relative-morphisms}.

\medskip\noindent
Let $S$ be a scheme. Let $Z \to B$ and $X \to B$ be morphisms of
algebraic spaces over $S$. Given a scheme $T$ we can consider pairs
$(a, b)$ where $a : T \to B$
Expand Down Expand Up @@ -1371,77 +1375,6 @@ \section{Relative morphisms}
which guarantees that $F \to U$ is surjective in the situation above.
\end{proof}

\begin{lemma}
\label{lemma-hom-from-finite-free-into-affine}
Let $Z \to B$ and $X \to B$ be morphisms of affine schemes.
Assume $\Gamma(Z, \mathcal{O}_Z)$ is a finite free
$\Gamma(B, \mathcal{O}_B)$-module. Then $\mathit{Mor}_B(Z, X)$
is representable by an affine scheme over $B$.
\end{lemma}

\begin{proof}
Write $B = \Spec(R)$. Choose a basis $\{e_1, \ldots, e_m\}$
for $\Gamma(Z, \mathcal{O}_Z)$. Finally, choose a presentation
$$
\Gamma(X, \mathcal{O}_X) = R[\{x_i\}_{i \in I}]/(\{f_k\}_{k \in K}).
$$
We will denote $\overline{x}_i$ the image of $x_i$ in this quotient.
Write
$$
P = R[\{a_{ij}\}_{i \in I, 1 \leq j \leq m}].
$$
Consider the $R$-algebra map
$$
\Psi :
R[\{x_i\}_{i \in I}]
\longrightarrow
P \otimes_R \Gamma(Z, \mathcal{O}_Z), \quad
x_i \longmapsto \sum\nolimits_j a_{ij} \otimes e_j.
$$
Write $\Psi(f_k) = \sum c_{kj} \otimes e_j$ with $c_{kj} \in P$.
Finally, denote $J \subset P$ the ideal generated by the elements
$c_{kj}$, $k \in K$, $1 \leq j \leq m$. We claim that
$W = \Spec(P/J)$ represents the functor $\mathit{Mor}_B(Z, X)$.

\medskip\noindent
First, note that by construction $P/J$ is an $R$-algebra, hence
a morphism $a_{univ} : W \to B$. Second, by construction the map
$\Psi$ factors through $\Gamma(X, \mathcal{O}_X)$, hence we obtain
an $P/J$-algebra homomorphism
$$
P/J \otimes_R \Gamma(X, \mathcal{O}_X)
\longrightarrow
P/J \otimes_R \Gamma(Z, \mathcal{O}_Z)
$$
which determines a morphism
$b_{univ} : W \times_{a_{univ}, B} Z \to W \times_{a_{univ}, B} X$.
By the Yoneda lemma the pair $(a_{univ}, b_{univ})$ determines a
transformation of functors $W \to \mathit{Mor}_B(Z, X)$ which we
claim is an isomorphism. To show that it is an isomorphism it suffices
to show that it induces a bijection of sets
$W(T) \to \mathit{Mor}_B(Z, X)(T)$ over any affine
scheme $T$.

\medskip\noindent
Suppose $T = \Spec(R')$ is an affine scheme
and $(a, b) \in \mathit{Mor}_B(Z, X)(T)$, then $a$ defines an
$R$-algebra structure on $R'$ and $b$ defines an $R'$-algebra map
$$
b^\sharp :
R' \otimes_R \Gamma(X, \mathcal{O}_X)
\longrightarrow
R' \otimes_R \Gamma(Z, \mathcal{O}_Z).
$$
In particular we can write
$b^\sharp(1 \otimes \overline{x}_i) = \sum \alpha_{ij} \otimes e_j$
for some $\alpha_{ij} \in R'$. This corresponds to an $R$-algebra map
$P \to R'$ determined by the rule $a_{ij} \mapsto \alpha_{ij}$. This
map factors through the quotient $P/J$ by the construction of the ideal
$J$ to give a map $P/J \to R'$. This in turn corresponds to a morphism
$T \to W$ such that $(a, b)$ is the pullback of $(a_{univ}, b_{univ})$.
Some details omitted.
\end{proof}

\begin{proposition}
\label{proposition-hom-functor-algebraic-space}
Let $S$ be a scheme. Let $Z \to B$ and $X \to B$ be morphisms of
Expand Down Expand Up @@ -1488,8 +1421,8 @@ \section{Relative morphisms}
$$
F_E = \mathit{Mor}_B(Z, \coprod\nolimits_{i \in E} X_i).
$$
By
Lemma \ref{lemma-hom-from-finite-free-into-affine}
By \'Etale Morphisms,
Lemma \ref{etale-lemma-hom-from-finite-free-into-affine}
we see that $F_E$ is an algebraic space. Consider the morphism
$$
\coprod\nolimits_{E \subset I\text{ finite}} F_E
Expand All @@ -1508,7 +1441,8 @@ \section{Relative morphisms}
$\coprod F_E$ is an algebraic space. This follows because
$|I| \leq \text{size}(X)$ and $\text{size}(F_E) \leq \text{size}(X)$
as follows from the explicit description of $F_E$ in the proof of
Lemma \ref{lemma-hom-from-finite-free-into-affine}.
\'Etale Morphisms,
Lemma \ref{etale-lemma-hom-from-finite-free-into-affine}.
Some details omitted.} by
Spaces, Lemma \ref{spaces-lemma-glueing-algebraic-spaces}.
\end{proof}
Expand Down
209 changes: 209 additions & 0 deletions etale.tex
Original file line number Diff line number Diff line change
Expand Up @@ -1957,6 +1957,215 @@ \section{Permanence properties}
formation of the completed local rings -- the details are left to the reader.







\section{Relative morphisms}
\label{section-relative-morphisms}

\noindent
We interrupt the discussion of \'etale morphisms to prove a
representability result which we will use in the next section
to discuss the category of finite \'etale coverings.
The material in this section is discussed in the correct
generality in Criteria for Representability, Section
\ref{criteria-section-relative-morphisms}.

\medskip\noindent
Let $S$ be a scheme. Let $Z$ and $X$ be schemes over $S$.
Given a scheme $T$ over $S$ we can consider morphisms
$b : T \times_S Z \to T \times_S X$ over $S$. Picture
\begin{equation}
\label{equation-hom}
\vcenter{
\xymatrix{
T \times_S Z \ar[rd] \ar[rr]_b & &
T \times_S X \ar[ld] & Z \ar[rd] & & X \ar[ld] \\
& T \ar[rrr] & & & S
}
}
\end{equation}
Of course, we can also think of $b$ as a morphism
$b : T \times_S Z \to X$ such that
$$
\xymatrix{
T \times_S Z \ar[r] \ar[d] \ar@/^1pc/[rrr]_-b &
Z \ar[rd] & & X \ar[ld] \\
T \ar[rr] & & S
}
$$
commutes. In this situation we can define a functor
\begin{equation}
\label{equation-hom-functor}
\mathit{Mor}_S(Z, X) : (\Sch/S)^{opp} \longrightarrow \textit{Sets},
\quad
T \longmapsto \{b\text{ as above}\}
\end{equation}
Here is a basic representability result.

\begin{lemma}
\label{lemma-hom-from-finite-free-into-affine}
Let $Z \to S$ and $X \to S$ be morphisms of affine schemes.
Assume $\Gamma(Z, \mathcal{O}_Z)$ is a finite free
$\Gamma(S, \mathcal{O}_S)$-module. Then $\mathit{Mor}_S(Z, X)$
is representable by an affine scheme over $S$.
\end{lemma}

\begin{proof}
Write $S = \Spec(R)$. Choose a basis $\{e_1, \ldots, e_m\}$
for $\Gamma(Z, \mathcal{O}_Z)$ over $R$. Choose a presentation
$$
\Gamma(X, \mathcal{O}_X) = R[\{x_i\}_{i \in I}]/(\{f_k\}_{k \in K}).
$$
We will denote $\overline{x}_i$ the image of $x_i$ in this quotient.
Write
$$
P = R[\{a_{ij}\}_{i \in I, 1 \leq j \leq m}].
$$
Consider the $R$-algebra map
$$
\Psi :
R[\{x_i\}_{i \in I}]
\longrightarrow
P \otimes_R \Gamma(Z, \mathcal{O}_Z), \quad
x_i \longmapsto \sum\nolimits_j a_{ij} \otimes e_j.
$$
Write $\Psi(f_k) = \sum c_{kj} \otimes e_j$ with $c_{kj} \in P$.
Finally, denote $J \subset P$ the ideal generated by the elements
$c_{kj}$, $k \in K$, $1 \leq j \leq m$. We claim that
$W = \Spec(P/J)$ represents the functor $\mathit{Mor}_S(Z, X)$.

\medskip\noindent
First, note that by construction $P/J$ is an $R$-algebra, hence
a morphism $W \to S$. Second, by construction the map
$\Psi$ factors through $\Gamma(X, \mathcal{O}_X)$, hence we obtain
an $P/J$-algebra homomorphism
$$
P/J \otimes_R \Gamma(X, \mathcal{O}_X)
\longrightarrow
P/J \otimes_R \Gamma(Z, \mathcal{O}_Z)
$$
which determines a morphism
$b_{univ} : W \times_S Z \to W \times_S X$.
By the Yoneda lemma $b_{univ}$ determines a
transformation of functors $W \to \mathit{Mor}_S(Z, X)$ which we
claim is an isomorphism. To show that it is an isomorphism it suffices
to show that it induces a bijection of sets
$W(T) \to \mathit{Mor}_S(Z, X)(T)$ over any affine
scheme $T$.

\medskip\noindent
Suppose $T = \Spec(R')$ is an affine scheme over $S$
and $b \in \mathit{Mor}_S(Z, X)(T)$. The structure morphism $T \to S$
defines an $R$-algebra structure on $R'$ and $b$ defines an $R'$-algebra map
$$
b^\sharp :
R' \otimes_R \Gamma(X, \mathcal{O}_X)
\longrightarrow
R' \otimes_R \Gamma(Z, \mathcal{O}_Z).
$$
In particular we can write
$b^\sharp(1 \otimes \overline{x}_i) = \sum \alpha_{ij} \otimes e_j$
for some $\alpha_{ij} \in R'$. This corresponds to an $R$-algebra map
$P \to R'$ determined by the rule $a_{ij} \mapsto \alpha_{ij}$. This
map factors through the quotient $P/J$ by the construction of the ideal
$J$ to give a map $P/J \to R'$. This in turn corresponds to a morphism
$T \to W$ such that $b$ is the pullback of $b_{univ}$.
Some details omitted.
\end{proof}

\begin{lemma}
\label{lemma-hom-from-finite-locally-free-into-affine}
Let $Z \to S$ and $X \to S$ be morphisms of schemes.
If $Z \to S$ is finite locally free and $X \to S$ is affine,
then $\mathit{Mor}_S(Z, X)$ is representable by a scheme
affine over $S$.
\end{lemma}

\begin{proof}
Choose an affine open covering $S = \bigcup U_i$ such that
$\Gamma(Z \times_S U_i, \mathcal{O}_{Z \times_S U_i})$ is
finite free over $\mathcal{O}_S(U_i)$. Let $F_i \subset \mathit{Mor}_S(Z, X)$
be the subfunctor which assigns to $T/S$ the empty set if
$T \to S$ does not factor through $U_i$ and $\mathit{Mor}_S(Z, X)(T)$
otherwise. Then the collection of these subfunctors satisfy the conditions
(2)(a), (2)(b), (2)(c) of
Schemes, Lemma \ref{schemes-lemma-glue-functors} which proves the lemma.
Condition (2)(a) follows from
Lemma \ref{lemma-hom-from-finite-free-into-affine}
and the other two follow from straightforward arguments.
\end{proof}

\noindent
The condition on the morphism $f : X \to S$ in the lemma below is very
useful to prove statements like it. It holds if one of the following
is true: $X$ is quasi-affine, $f$ is quasi-affine, $f$ is quasi-projective,
$f$ is locally projective, there exists an ample invertible sheaf on $X$,
there exists an $f$-ample invertible sheaf on $X$, or
there exists an $f$-very ample invertible sheaf on $X$.

\begin{lemma}
\label{lemma-hom-from-finite-locally-free-representable}
Let $Z \to S$ and $X \to S$ be morphisms of schemes.
Assume
\begin{enumerate}
\item $Z \to S$ is finite locally free, and
\item for all $(s, x_1, \ldots, x_d)$ where $s \in S$ and
$x_1, \ldots, x_d \in X_s$ there exists an affine open $U \subset X$
with $x_1, \ldots, x_d \in U$.
\end{enumerate}
Then $\mathit{Mor}_S(Z, X)$ is representable by a scheme.
\end{lemma}

\begin{proof}
Consider the set $I$ of pairs $(U, V)$ where $U \subset X$ and $V \subset S$
are affine open and $U \to S$ factors through $V$. For $i \in I$ denote
$(U_i, V_i)$ the corresponding pair. Set
$F_i = \mathit{Mor}_{V_i}(Z_{V_i}, U_i)$.
It is immediate that $F_i$ is a subfunctor of $\mathit{Mor}_S(Z, X)$.
Then we claim that conditions
(2)(a), (2)(b), (2)(c) of
Schemes, Lemma \ref{schemes-lemma-glue-functors} which proves the lemma.

\medskip\noindent
Condition (2)(a) follows from
Lemma \ref{lemma-hom-from-finite-locally-free-into-affine}.

\medskip\noindent
To check condition (2)(b) consider $T/S$ and $b \in \mathit{Mor}_S(Z, X)$.
Thinking of $b$ as a morphism $T \times_S Z \to X$ we find an open
$b^{-1}(U_i) \subset T \times_S Z$. Clearly, $b \in F_i(T)$
if and only if $b^{-1}(U_i) = T \times_S Z$. Since the projection
$p : T \times_S Z \to T$ is finite hence closed, the set
$U_{i, b} \subset T$ of points $t \in T$ with
$p^{-1}(\{t\}) \subset b^{-1}(U_i)$ is open.
Then $f : T' \to T$ factors through $U_{i, b}$ if and only
if $b \circ f \in F_i(T')$ and we are done checking (2)(b).

\medskip\noindent
Finally, we check condition (2)(c) and this is where our condition
on $X \to S$ is used. Namely, consider
$T/S$ and $b \in \mathit{Mor}_S(Z, X)$.
It suffices to prove that every $t \in T$
is contained in one of the opens $U_{i, b}$ defined
in the previous paragraph.
This is equivalent to the condition that
$b(p^{-1}(\{t\})) \subset U_i$ for some $i$
where $p : T \times_S Z \to T$ is the projection and
$b : T \times_S Z \to X$ is the given morphism.
Since $p$ is finite, the set $b(p^{-1}(\{t\})) \subset X$
is finite and contained in the fibre of $X \to S$ over
the image $s$ of $t$ in $S$.
Thus our condition on $X \to S$ exactly shows a
suitable pair exists.
\end{proof}





\input{chapters}


Expand Down
2 changes: 1 addition & 1 deletion tags/tags
Original file line number Diff line number Diff line change
Expand Up @@ -7640,7 +7640,7 @@
05Y3,criteria-lemma-hom-functor-sheaf
05Y4,criteria-lemma-base-change-hom-functor
05Y5,criteria-lemma-etale-covering-hom-functor
05Y6,criteria-lemma-hom-from-finite-free-into-affine
05Y6,etale-lemma-hom-from-finite-free-into-affine
05Y7,criteria-proposition-hom-functor-algebraic-space
05Y8,criteria-section-restriction-of-scalars
05Y9,criteria-equation-pairs
Expand Down

0 comments on commit 56009ea

Please sign in to comment.