Skip to content

Commit

Permalink
Minor corrections on algebra matters.
Browse files Browse the repository at this point in the history
algebra.tex:355: The "this" in the "Informally this means..." paragraph
refers to the notion of "finitely presented", and so belongs inside part (2) of the
definition, rather than after it. (Otherwise it should be more explicit
about what it means by "this".)

algebra.tex:718: I have never seen transitive relations referred to as
"associative", so I take this for a typo.

algebra.tex:1863: There are various R-modules around, so I figured a bit more
explicitness wouldn't hurt.

algebra.tex:2021: It is certainly not the only iso $f : S^{-1}R \otimes_R M
\to S^{-1}M$.

algebra.tex:8067: The "(faithfully)" alternatives were added to the second
sentence to help prove the first sentence. It wouldn't hurt splitting the
lemma in two, though, as it now makes four different claims.

more-algebra.tex:4556: Fixed to the best of my knowledge. I am not 100% sure
of this since I don't know your notations.
  • Loading branch information
darijgr authored and aisejohan committed Mar 30, 2015
1 parent 28b9292 commit b256223
Show file tree
Hide file tree
Showing 4 changed files with 45 additions and 31 deletions.
60 changes: 37 additions & 23 deletions algebra.tex
Original file line number Diff line number Diff line change
Expand Up @@ -337,7 +337,7 @@ \section{Finite modules and finitely presented modules}

\begin{definition}
\label{definition-module-finite-type}
Let $R$ be a ring. Let $M$ be an $R$-module
Let $R$ be a ring. Let $M$ be an $R$-module.
\begin{enumerate}
\item We say $M$ is a {\it finite $R$-module}, or a {\it finitely generated
$R$-module} if there exist $n \in \mathbf{N}$ and $x_1, \ldots, x_n \in M$
Expand All @@ -350,14 +350,14 @@ \section{Finite modules and finitely presented modules}
$$
R^{\oplus m} \longrightarrow R^{\oplus n} \longrightarrow M \longrightarrow 0
$$
\end{enumerate}
\end{definition}

\noindent
Informally this means that $M$ is finitely generated and that the module
of relations among these generators is finitely generated as well. A choice
of an exact sequence as in the definition is called a {\it presentation}
of $M$.
\end{enumerate}
\end{definition}

\begin{lemma}
\label{lemma-lift-map}
Expand Down Expand Up @@ -715,7 +715,7 @@ \section{Colimits}
\begin{definition}
\label{definition-directed-set}
A {\it partially ordered set} is a set $I$ together with a relation
$\leq$ which is associative (if $i \leq j$ and $j \leq k$
$\leq$ which is transitive (if $i \leq j$ and $j \leq k$
then $i \leq k$) and reflexive ($i \leq i$ for all $i \in I$).
A {\it directed set} $(I, \leq)$
is a partially ordered set $(I, \leq)$ such that
Expand Down Expand Up @@ -829,8 +829,8 @@ \section{Colimits}
\begin{lemma}
\label{lemma-zero-directed-limit}
Let $(M_i, \mu_{ij})$ be a directed system.
Let $M = \colim M_i$ with $\mu_i : M_i \to M$,
then $\mu_i(x_i) = 0$ for $x_i \in M_i$ if and only if
Let $M = \colim M_i$ with $\mu_i : M_i \to M$.
Then, $\mu_i(x_i) = 0$ for $x_i \in M_i$ if and only if
there exists $j \geq i$ such that $\mu_{ij}(x_i) = 0$.
\end{lemma}

Expand Down Expand Up @@ -918,7 +918,7 @@ \section{Colimits}
=
\phi_j(x_j) - \phi_k(\mu_{jk}(x_j))
=
\phi_j(x_j) - \nu_{jk}(\phi_i(x_j))
\phi_j(x_j) - \nu_{jk}(\phi_j(x_j))
$$
which is in the kernel of the lower horizontal arrow as required.
\end{proof}
Expand Down Expand Up @@ -1545,7 +1545,7 @@ \section{Internal Hom}
is exact for all $R$-modules $N$.
\item Let $0 \to M_1 \to M_2 \to M_3$ be a complex of $R$-modules.
Then $0 \to M_1 \to M_2 \to M_3$ is exact if and only if
$0 \to \Hom_R(N, M_1) \to \Hom_R(N, M_2) \to \Hom_R(N, M_1)$
$0 \to \Hom_R(N, M_1) \to \Hom_R(N, M_2) \to \Hom_R(N, M_3)$
is exact for all $R$-modules $N$.
\end{enumerate}
\end{lemma}
Expand Down Expand Up @@ -1775,6 +1775,7 @@ \section{Tensor products}
$z\in P$, then the mapping $(x, y)\mapsto x \otimes y \otimes z$,
$x\in M, y\in N$, is $R$-bilinear in $x$ and $y$,
and hence induces homomorphism $f_z : M \otimes N \to M \otimes N \otimes P$
which sends
$f_z(x \otimes y) = x \otimes y \otimes z$.
Then consider $(M \otimes N)\times P \to M \otimes N \otimes P$ given by
$(w, z)\mapsto f_z(w)$. The map is
Expand Down Expand Up @@ -1853,11 +1854,13 @@ \section{Tensor products}
f(ax + y, z) = af(x, z)+f(y, z) =
(a\phi_f(x)+\phi_f(y))(z),
$$
for all $y \in N$ and for all $a \in R$, $x, z \in M$. Conversely, any
for all $a \in R$, $x \in M$, $y \in M$ and
$z \in N$. Conversely, any
$f \in \Hom_R(M, \Hom_R(N, P))$ defines an $R$-bilinear
map $M \times N \to P$, namely $(x, y)\mapsto f(x)(y)$.
So this is a natural one-to-one correspondence between the
two modules.
two modules
$\Hom_R(M \otimes_R N, P)$ and $\Hom_R(M, \Hom_R(N, P))$.
\end{proof}

\begin{lemma}[Tensor products commute with colimits]
Expand Down Expand Up @@ -2013,9 +2016,9 @@ \section{Tensor products}

\begin{lemma}
\label{lemma-tensor-localization}
Let $M$ be an $R$-module. Then the $S^{-1}R$ modules $S^{-1}M$
Let $M$ be an $R$-module. Then the $S^{-1}R$-modules $S^{-1}M$
and $S^{-1}R \otimes_R M$ are canonically isomorphic, and the
unique isomorphism $f : S^{-1}R \otimes_R M \to S^{-1}M$
canonical isomorphism $f : S^{-1}R \otimes_R M \to S^{-1}M$
is given by
$$
f((a/s) \otimes m) = am/s, \forall a \in R, m \in M, s \in S
Expand All @@ -2024,7 +2027,7 @@ \section{Tensor products}

\begin{proof}
Obviously, the map
$f' : S^{-1}R \times M \to S^{-1}M$ given by $f((am, s)) = am/s$ is
$f' : S^{-1}R \times M \to S^{-1}M$ given by $f((a/s, m)) = am/s$ is
bilinear, and thus by the
universal property, this map induces a unique $S^{-1}R$-module homomorphism
$f : S^{-1}R \otimes_R M \to S^{-1}M$ as in the statement of the lemma.
Expand Down Expand Up @@ -2123,8 +2126,10 @@ \section{Tensor algebra}
in $\wedge^n(M)$ is denoted $x_1 \wedge \ldots \wedge x_n$.
These elements generate $\wedge^n(M)$, they are $R$-linear
in each $x_i$ and they are zero when two of the $x_i$ are equal
(i.e., alternating). The multiplication on $\wedge(M)$ is
graded commutative, i.e., $x \wedge y = - y \wedge x$.
(i.e., they are alternating as functions of
$x_1, x_2, \ldots, x_n$). The multiplication on $\wedge(M)$ is
graded commutative, i.e., every $x \in M$ and $y \in M$
satisfy $x \wedge y = - y \wedge x$.

\medskip\noindent
An example of this is when $M = Rx_1 \oplus \ldots \oplus Rx_n$
Expand Down Expand Up @@ -2700,7 +2705,7 @@ \section{Cayley-Hamilton}
$(1 + a_1 + \ldots + a_n)\text{id}_M = 0$ with $a_j \in I$.
Write $a_j = b_j(x)x$ for some $b_j(x) \in R[x]$.
Translating back into $\varphi$ we see that
$\text{id}_M = -(\sum_{j = 1, \ldots, n} b_j(\varphi) \varphi$ and hence
$\text{id}_M = -(\sum_{j = 1, \ldots, n} b_j(\varphi)) \varphi$, and hence
$\varphi$ is invertible.
\end{proof}

Expand Down Expand Up @@ -8058,8 +8063,10 @@ \section{Flat modules and flat ring maps}
\begin{lemma}
\label{lemma-composition-flat}
A composition of (faithfully) flat ring maps is
(faithfully) flat. If $R \to R'$ is flat, and $M'$ is a flat
$R'$-module, then $M'$ is a flat $R$-module.
(faithfully) flat.
If $R \to R'$ is (faithfully) flat, and $M'$ is a
(faithfully) flat $R'$-module, then $M'$ is a
(faithfully) flat $R$-module.
\end{lemma}

\begin{proof}
Expand All @@ -8083,7 +8090,10 @@ \section{Flat modules and flat ring maps}
to the complex
$M' \otimes_R N_1 \to M' \otimes_R N_2 \to M' \otimes_R N_3$,
which is therefore also exact. This shows that $M'$ is a flat
$R$-module.
$R$-module. Tracing this argument backwards, we can show
that if $R \to R'$ is faithfully flat, and if $M'$ is
faithfully flat as an $R'$-module, then $M'$ is faithfully
flat as an $R$-module.
\end{proof}

\begin{lemma}
Expand Down Expand Up @@ -8128,13 +8138,15 @@ \section{Flat modules and flat ring maps}
injective $R$-module maps into injective $R$-module maps.

\medskip\noindent
Assume $K \to M$ is an injective $R$-module map and
Assume $K \to N$ is an injective $R$-module map and
let $x \in \Ker(K \otimes_R M \to N \otimes_R M)$.
We have to show that $x$ is zero. It is clear that
the module $N = \bigcup N_i$ is the union of its
finitely generated $R$-submodules $N_i$. Set $K_i = K \cap N_i$.
finitely generated $R$-submodules $N_i$. Set $K_i = K \cap N_i$
(where we view $K$ as an $R$-submodule of $N$ via the
injective $R$-module map $K \to N$).
For some $i$ our $x$ comes from an element $x_i \in K_i \otimes_R M$.
After increasing $i$ the element $x_i$ maps to zero in $M_i \otimes_R M$
After increasing $i$ the element $x_i$ maps to zero in $N_i \otimes_R M$
(because tensor product commutes with colimits).
Thus we may assume $N$ is a finite $R$-module.

Expand Down Expand Up @@ -8316,7 +8328,9 @@ \section{Flat modules and flat ring maps}

\begin{proof}
Assume $M$ is flat and let $\sum f_i x_i = 0$ be a relation.
Let $I = (f_1, \ldots, f_n)$, and let $K = \Ker(R^n \to I)$.
Let $I = (f_1, \ldots, f_n)$, and let $K = \Ker(R^n \to I)$,
where the map $R^n \to I$ is given by sending
$\left(z_1, z_2, \ldots, z_n\right)$ to $\sum_i f_i z_i$.
So we have the short exact sequence
$0 \to K \to R^n \to I \to 0$. Then $\sum f_i \otimes x_i$
is an element of $I \otimes_R M$ which maps
Expand Down
2 changes: 1 addition & 1 deletion dga.tex
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,7 @@ \section{Differential graded algebras}
$$
endowed with differential $\text{d}$ defined by the rule
$\text{d}(a \otimes b) = \text{d}(a) \otimes b + (-1)^m a \otimes \text{d}(b)$
where $m = \deg(b)$.
where $m = \deg(a)$.
\end{definition}

\begin{lemma}
Expand Down
6 changes: 3 additions & 3 deletions dpa.tex
Original file line number Diff line number Diff line change
Expand Up @@ -488,12 +488,12 @@ \section{Extending divided powers}
\end{lemma}

\begin{proof}
Any element of $IB$ can be written as a finite sum $\sum b_ix_i$ with
Any element of $IB$ can be written as a finite sum $\sum\nolimits_{i=1}^t b_ix_i$ with
$b_i \in B$ and $x_i \in I$. If $\gamma$ extends to $\bar\gamma$ on $IB$
then $\bar\gamma_n(x_i) = \gamma_n(x_i)$.
Thus conditions (3) and (4) imply that
Thus, conditions (3) and (4) in Definition \ref{definition-divided-powers} imply that
$$
\bar\gamma_n(\sum b_ix_i) =
\bar\gamma_n(\sum\nolimits_{i=1}^t b_ix_i) =
\sum\nolimits_{n_1 + \ldots + n_t = n}
\prod\nolimits_{i = 1}^t b_i^{n_i}\gamma_{n_i}(x_i)
$$
Expand Down
8 changes: 4 additions & 4 deletions more-algebra.tex
Original file line number Diff line number Diff line change
Expand Up @@ -4528,7 +4528,7 @@ \section{The Koszul complex}

\begin{lemma}
\label{lemma-functorial}
Let $\varphi : E \to R$ and $\varphi : E' \to R$ be an $R$-module maps.
Let $\varphi : E \to R$ and $\varphi' : E' \to R$ be $R$-module maps.
Let $\psi : E \to E'$ be an $R$-module map such that
$\varphi' \circ \psi = \varphi$. Then $\psi$ induces a
homomorphism of differential graded algebras
Expand All @@ -4546,15 +4546,15 @@ \section{The Koszul complex}
coefficients in $R$. Then the complexes
$K_\bullet(f_\bullet)$ and
$$
K_\bullet(\sum x_{1j}f_j, \sum x_{2j}f_j, \ldots, \sum x_{cj}f_j)
K_\bullet(\sum x_{1j}f_j, \sum x_{2j}f_j, \ldots, \sum x_{rj}f_j)
$$
are isomorphic.
\end{lemma}

\begin{proof}
Set $g_i = \sum x_{ij}f_j$.
The matrix $(x_{ij})$ gives an isomorphism $x : R^{\oplus r} \to R^{\oplus r}$
such that $(g_1, \ldots, g_r) \circ x = (f_1, \ldots, f_r)$.
The matrix $(x_{ji})$ gives an isomorphism $x : R^{\oplus r} \to R^{\oplus r}$
such that $(g_1, \ldots, g_r) = (f_1, \ldots, f_r) \circ x$.
Hence this follows from the functoriality of the Koszul complex
described in
Lemma \ref{lemma-functorial}.
Expand Down

0 comments on commit b256223

Please sign in to comment.