Skip to content

Commit

Permalink
assignes -> assigns
Browse files Browse the repository at this point in the history
  • Loading branch information
aisejohan committed Nov 15, 2020
1 parent 36df0d3 commit c1510ba
Show file tree
Hide file tree
Showing 3 changed files with 10 additions and 10 deletions.
10 changes: 5 additions & 5 deletions chow.tex
Expand Up @@ -5647,7 +5647,7 @@ \section{Bivariant intersection theory}
Let $(S, \delta)$ be as in Situation \ref{situation-setup}.
Let $f : X \to Y$ be a flat morphism of relative dimension $r$
between schemes locally of finite type over $S$.
Then the rule that to $Y' \to Y$ assignes
Then the rule that to $Y' \to Y$ assigns
$(f')^* : \CH_k(Y') \to \CH_{k + r}(X')$ where $X' = X \times_Y Y'$
is a bivariant class of degree $-r$.
\end{lemma}
Expand All @@ -5666,7 +5666,7 @@ \section{Bivariant intersection theory}
Let $X$ be locally of finite type over $S$.
Let $(\mathcal{L}, s, i : D \to X)$ be a triple as in
Definition \ref{definition-gysin-homomorphism}.
Then the rule that to $f : X' \to X$ assignes
Then the rule that to $f : X' \to X$ assigns
$(i')^* : \CH_k(X') \to \CH_{k - 1}(D')$ where $D' = D \times_X X'$
is a bivariant class of degree $1$.
\end{lemma}
Expand All @@ -5684,7 +5684,7 @@ \section{Bivariant intersection theory}
Let $f : X \to Y$ and $g : Y \to Z$ be morphisms of
schemes locally of finite type over $S$.
Let $c \in A^p(X \to Z)$ and assume $f$ is proper.
Then the rule that to $Z' \to Z$ assignes
Then the rule that to $Z' \to Z$ assigns
$\alpha \longmapsto f'_*(c \cap \alpha)$
is a bivariant class denoted $f_* \circ c \in A^p(Y \to Z)$.
\end{lemma}
Expand Down Expand Up @@ -5814,7 +5814,7 @@ \section{Chow cohomology and the first Chern class}
Let $(S, \delta)$ be as in Situation \ref{situation-setup}.
Let $X$ be locally of finite type over $S$.
Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module.
Then the rule that to $f : X' \to X$ assignes
Then the rule that to $f : X' \to X$ assigns
$c_1(f^*\mathcal{L}) \cap - : \CH_k(X') \to \CH_{k - 1}(X')$
is a bivariant class of degree $1$.
\end{lemma}
Expand Down Expand Up @@ -6929,7 +6929,7 @@ \section{Intersecting with Chern classes}
Let $X$ be locally of finite type over $S$.
Let $\mathcal{E}$ be a locally free $\mathcal{O}_X$-module
of rank $r$. Let $0 \leq p \leq r$.
Then the rule that to $f : X' \to X$ assignes
Then the rule that to $f : X' \to X$ assigns
$c_p(f^*\mathcal{E}) \cap - : \CH_k(X') \to \CH_{k - 1}(X')$
is a bivariant class of degree $p$.
\end{lemma}
Expand Down
2 changes: 1 addition & 1 deletion quot.tex
Expand Up @@ -3451,7 +3451,7 @@ \section{The stack of algebraic spaces}
\medskip\noindent
The construction from left to right in either arrow is straightforward:
given $X \to T$ of finite type the functor
$\mathcal{S}_T \to \Spacesstack'_{ft}$ assignes to $U/T$ the
$\mathcal{S}_T \to \Spacesstack'_{ft}$ assigns to $U/T$ the
base change $X_U \to U$. We will explain how to construct a quasi-inverse.

\medskip\noindent
Expand Down
8 changes: 4 additions & 4 deletions spaces-chow.tex
Expand Up @@ -3927,7 +3927,7 @@ \section{Bivariant intersection theory}
\label{lemma-cap-c1-bivariant}
In Situation \ref{situation-setup} let $X/B$ be good.
Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module.
Then the rule that to $f : X' \to X$ assignes
Then the rule that to $f : X' \to X$ assigns
$c_1(f^*\mathcal{L}) \cap - : \CH_k(X') \to \CH_{k - 1}(X')$
is a bivariant class of degree $1$.
\end{lemma}
Expand All @@ -3943,7 +3943,7 @@ \section{Bivariant intersection theory}
\label{lemma-flat-pullback-bivariant}
In Situation \ref{situation-setup} let $f : X \to Y$ be a morphism
of good algebraic spaces over $B$ which is flat of relative dimension $r$.
Then the rule that to $Y' \to Y$ assignes
Then the rule that to $Y' \to Y$ assigns
$(f')^* : \CH_k(Y') \to \CH_{k + r}(X')$ where $X' = X \times_Y Y'$
is a bivariant class of degree $-r$.
\end{lemma}
Expand All @@ -3961,7 +3961,7 @@ \section{Bivariant intersection theory}
In Situation \ref{situation-setup} let $X/B$ be good.
Let $(\mathcal{L}, s, i : D \to X)$ be a triple as in
Definition \ref{definition-gysin-homomorphism}.
Then the rule that to $f : X' \to X$ assignes
Then the rule that to $f : X' \to X$ assigns
$(i')^* : \CH_k(X') \to \CH_{k - 1}(D')$ where $D' = D \times_X X'$
is a bivariant class of degree $1$.
\end{lemma}
Expand All @@ -3978,7 +3978,7 @@ \section{Bivariant intersection theory}
In Situation \ref{situation-setup} let $f : X \to Y$ and
$g : Y \to Z$ be morphisms of good algebraic spaces over $B$.
Let $c \in A^p(X \to Z)$ and assume $f$ is proper.
Then the rule that to $X' \to X$ assignes
Then the rule that to $X' \to X$ assigns
$\alpha \longmapsto f_*(c \cap \alpha)$
is a bivariant class of degree $p$.
\end{lemma}
Expand Down

0 comments on commit c1510ba

Please sign in to comment.