Skip to content

Commit

Permalink
Fix problem with nonseparated morphisms
Browse files Browse the repository at this point in the history
The diagonal needn't be a closed immersion...
  • Loading branch information
aisejohan committed Jun 29, 2017
1 parent 2b98b32 commit dac23ef
Showing 1 changed file with 46 additions and 35 deletions.
81 changes: 46 additions & 35 deletions duality.tex
Expand Up @@ -5837,25 +5837,30 @@ \section{Relative dualizing complexes}
\begin{definition}
\label{definition-relative-dualizing-complex}
Let $X \to S$ be a morphism of schemes which is flat and
locally of finite presentation.
locally of finite presentation. Let $W \subset X \times_S X$
be any open such that the diagonal $\Delta_{X/S} : X \times_S X$
factors through a closed immersion $\Delta : X \to W$.
A {\it relative dualizing complex} is a
pair $(K, \xi)$ consisting of an object $K \in D(\mathcal{O}_X)$
and a map
$$
\xi : \Delta_*\mathcal{O}_X \longrightarrow L\text{pr}_1^*K
\xi : \Delta_*\mathcal{O}_X \longrightarrow L\text{pr}_1^*K|_W
$$
in $D(\mathcal{O}_{X \times_S X})$ such that
in $D(\mathcal{O}_W)$ such that
\begin{enumerate}
\item $K$ is $S$-perfect (Derived Categories of Schemes, Definition
\ref{perfect-definition-relatively-perfect}), and
\item $\xi$ defines an isomorphism of $\Delta_*\mathcal{O}_X$
with
$R\SheafHom_{\mathcal{O}_{X \times_S X}}(
\Delta_*\mathcal{O}_X, L\text{pr}_1^*K)$.
$R\SheafHom_{\mathcal{O}_W}(
\Delta_*\mathcal{O}_X, L\text{pr}_1^*K|_W)$.
\end{enumerate}
\end{definition}

\noindent
Observe that the category of pairs $(K, \xi)$ as in the
definition is independent of the choice of $W$. If $X \to S$
is separated, then we can choose $W = X \times_S X$.
We will reduce many of the arguments to the case of rings
using the following lemma.

Expand Down Expand Up @@ -5895,7 +5900,7 @@ \section{Relative dualizing complexes}
\ref{perfect-lemma-quasi-coherence-internal-hom}.
For the last one we observe that $L\text{pr}_1^*K$
is $S$-perfect (hence bounded below) and that $\Delta_*\mathcal{O}_X$
is a pseudo-coherent object of $D(\mathcal{O}_{X \times_S X})$;
is a pseudo-coherent object of $D(\mathcal{O}_W)$;
translated into algebra this means that $A$ is pseudo-coherent
as an $A \otimes_R A$-module which follows from
More on Algebra, Lemma
Expand Down Expand Up @@ -5943,7 +5948,7 @@ \section{Relative dualizing complexes}
\medskip\noindent
Suppose we have an isomorphism $\alpha : K \to L$.
Then $\alpha(\xi) = u \eta$ for some invertible section
$u \in H^0(X \times_S X, \Delta_*\mathcal{O}_X) = H^0(X, \mathcal{O}_X)$.
$u \in H^0(W, \Delta_*\mathcal{O}_X) = H^0(X, \mathcal{O}_X)$.
(Because both $\eta$ and $\alpha(\xi)$ are generators
of an invertible $\Delta_*\mathcal{O}_X$-module by assumption.)
Hence after replacing $\alpha$ by $u^{-1}\alpha$
Expand Down Expand Up @@ -6018,41 +6023,40 @@ \section{Relative dualizing complexes}
\medskip\noindent
To finish the proof we have to construct the map
$$
\xi : \Delta_*\mathcal{O}_X \longrightarrow L\text{pr}_1^*K
\xi : \Delta_*\mathcal{O}_X \longrightarrow L\text{pr}_1^*K|_W
$$
in $D(\mathcal{O}_{X \times_S X})$ inducing an isomorphism from
$\Delta_*\mathcal{O}_X$ to $R\SheafHom_{\mathcal{O}_{X \times_S X}}(
\Delta_*\mathcal{O}_X, L\text{pr}_1^*K)$. We can use $\rho_U$ to
get isomorphisms
in $D(\mathcal{O}_W)$ inducing an isomorphism from $\Delta_*\mathcal{O}_X$ to
$R\SheafHom_{\mathcal{O}_W}(\Delta_*\mathcal{O}_X, L\text{pr}_1^*K|_W)$.
Since we may change $W$, we choose
$W = \bigcup_{U \in \mathcal{B}} U \times_S U$.
We can use $\rho_U$ to get isomorphisms
$$
R\SheafHom_{\mathcal{O}_{X \times_S X}}(
\Delta_*\mathcal{O}_X, L\text{pr}_1^*K)|_{U \times_S U}
R\SheafHom_{\mathcal{O}_W}(
\Delta_*\mathcal{O}_X, L\text{pr}_1^*K|_W)|_{U \times_S U}
\xrightarrow{\rho_U}
R\SheafHom_{\mathcal{O}_{U \times_S U}}(
\Delta_*\mathcal{O}_U, L\text{pr}_1^*K_U)
$$
As $R\SheafHom_{\mathcal{O}_{X \times_S X}}(
\Delta_*\mathcal{O}_X, L\text{pr}_1^*K)$
is supported on $\Delta(X)$ we conclude that its cohomology sheaves are zero
except in degree $0$. Moreover, we obtain isomorphisms
As $W$ is covered by the opens $U \times_S U$
we conclude that the cohomology sheaves of
$R\SheafHom_{\mathcal{O}_W}(\Delta_*\mathcal{O}_X, L\text{pr}_1^*K|_W)$
are zero except in degree $0$. Moreover, we obtain isomorphisms
$$
H^0\left(U \times_S U, R\SheafHom_{\mathcal{O}_W}(\Delta_*\mathcal{O}_X,
L\text{pr}_1^*K|_W)\right)
\xrightarrow{\rho_U}
H^0\left((R\SheafHom_{\mathcal{O}_{U \times_S U}}(
\Delta_*\mathcal{O}_U, L\text{pr}_1^*K_U)\right)
\xrightarrow{\rho_U}
H^0\left(R\SheafHom_{\mathcal{O}_{X \times_S X}}(\Delta_*\mathcal{O}_X,
L\text{pr}_1^*K)\right)|_{U \times_S U}
$$
Let $\tau_U$ in the RHS be the image of $\xi_U$
viewed as an element of the LHS under this map.
Let $\tau_U$ in the LHS be an element mapping to $\xi_U$ under this map.
The compatibilities between
$\rho^U_{U'}$, $\xi_U$, $\xi_{U'}$, $\rho_U$, and $\rho_{U'}$
for $U' \subset U \subset X$ open $U', U \in \mathcal{B}$
imply that $\tau_U|_{U' \times_S U'} = \tau_{U'}$. Since
$H^0(R\SheafHom_{\mathcal{O}_{X \times_S X}}(\Delta_*\mathcal{O}_X,
L\text{pr}_1^*K))$ is a sheaf we get a global section $\tau$.
imply that $\tau_U|_{U' \times_S U'} = \tau_{U'}$.
Thus we get a global section $\tau$ of the $0$th cohomology sheaf
$H^0(R\SheafHom_{\mathcal{O}_W}(\Delta_*\mathcal{O}_X, L\text{pr}_1^*K|_W))$.
Since the other cohomology sheaves of
$R\SheafHom_{\mathcal{O}_{X \times_S X}}(\Delta_*\mathcal{O}_X,
L\text{pr}_1^*K)$
$R\SheafHom_{\mathcal{O}_W}(\Delta_*\mathcal{O}_X, L\text{pr}_1^*K|_W)$
are zero, this global section $\tau$
determines a morphism $\xi$ as desired. Since the restriction
of $\xi$ to $U \times_S U$ gives $\xi_U$, we see that it
Expand All @@ -6079,17 +6083,22 @@ \section{Relative dualizing complexes}
Consider the cartesian square
$$
\xymatrix{
X' \ar[d]_{\Delta'} \ar[r] & X \ar[d]^\Delta \\
X' \ar[d]_{\Delta_{X'/S'}} \ar[r] & X \ar[d]^\Delta_{X/S} \\
X' \times_{S'} X' \ar[r]^{g' \times g'} & X \times_S X
}
$$
We have
Choose $W \subset X \times_S X$ open such that $\Delta_{X/S}$
factors through a closed immersion $\Delta : X \to W$.
Choose $W' \subset X' \times_{S'} X'$ open such that $\Delta_{X'/S'}$
factors through a closed immersion $\Delta' : X \to W'$
and such that $(g' \times g')(W') \subset W$. Let us still denote
$g' \times g' : W' \to W$ the induced morphism. We have
$$
L(g' \times g')^*\Delta_*\mathcal{O}_X =
\Delta'_*\mathcal{O}_{X'}
\quad\text{and}\quad
L(g' \times g')^*L\text{pr}_1^*K =
L\text{pr}_1^*K'
L(g' \times g')^*L\text{pr}_1^*K|_W =
L\text{pr}_1^*K'|_{W'}
$$
The first equality holds because $X$ and $X' \times_{S'} X'$
are tor independent over $X \times_S X$ (see for example
Expand All @@ -6098,15 +6107,15 @@ \section{Relative dualizing complexes}
(Cohomology, Lemma \ref{cohomology-lemma-derived-pullback-composition}).
Thus $\xi' = L(g' \times g')^*\xi$ can be viewed as a map
$$
\xi' : \Delta'_*\mathcal{O}_{X'} \longrightarrow L\text{pr}_1^*K'
\xi' : \Delta'_*\mathcal{O}_{X'} \longrightarrow L\text{pr}_1^*K'|_{W'}
$$
Having said this the proof of the lemma is straightforward.
First, $K'$ is $S'$-perfect by Derived Categories of Schemes, Lemma
\ref{perfect-lemma-base-change-relatively-perfect}.
To check that $\xi'$ induces an isomorphism
of $\Delta'_*\mathcal{O}_{X'}$ to
$R\SheafHom_{\mathcal{O}_{X' \times_{S'} X'}}(
\Delta'_*\mathcal{O}_{X'}, L\text{pr}_1^*K')$
$R\SheafHom_{\mathcal{O}_{W'}}(
\Delta'_*\mathcal{O}_{X'}, L\text{pr}_1^*K'|_{W'})$
we may work affine locally. By
Lemma \ref{lemma-relative-dualizing-complex-algebra}
we reduce to the corresponding statement in algebra
Expand Down Expand Up @@ -6167,6 +6176,8 @@ \section{Relative dualizing complexes}





\input{chapters}

\bibliography{my}
Expand Down

0 comments on commit dac23ef

Please sign in to comment.