Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Browse files

REF: return resultswrappers for L1 results

  • Loading branch information...
commit ce41a0b271b9babe68085c8911a442de201584cb 1 parent d81fe45
@josef-pkt josef-pkt authored
Showing with 18 additions and 6 deletions.
  1. +18 −6 statsmodels/discrete/discrete_model.py
View
24 statsmodels/discrete/discrete_model.py
@@ -320,8 +320,8 @@ def fit_regularized(self, start_params=None, method='l1',
else:
raise Exception(
"argument method == %s, which is not handled" % method)
- return BinaryResultsWrapper(discretefit)
- fit_regularized.__doc__ = DiscreteModel.fit.__doc__
+ return L1BinaryResultsWrapper(discretefit)
+ fit_regularized.__doc__ = DiscreteModel.fit_regularized.__doc__
def _derivative_predict(self, params, exog=None, transform='dydx'):
"""
@@ -458,8 +458,8 @@ def fit_regularized(self, start_params=None, method='l1',
size_trim_tol=size_trim_tol, qc_tol=qc_tol, **kwargs)
mnfit.params = mnfit.params.reshape(self.K, -1, order='F')
mnfit = L1MultinomialResults(self, mnfit)
- return MultinomialResultsWrapper(mnfit)
- fit_regularized.__doc__ = DiscreteModel.fit.__doc__
+ return L1MultinomialResultsWrapper(mnfit)
+ fit_regularized.__doc__ = DiscreteModel.fit_regularized.__doc__
def _derivative_predict(self, params, exog=None, transform='dydx'):
@@ -687,8 +687,8 @@ def fit_regularized(self, start_params=None, method='l1',
else:
raise Exception(
"argument method == %s, which is not handled" % method)
- return CountResultsWrapper(discretefit)
- fit_regularized.__doc__ = DiscreteModel.fit.__doc__
+ return L1CountResultsWrapper(discretefit)
+ fit_regularized.__doc__ = DiscreteModel.fit_regularized.__doc__
class OrderedModel(DiscreteModel):
@@ -2292,14 +2292,26 @@ class CountResultsWrapper(lm.RegressionResultsWrapper):
pass
wrap.populate_wrapper(CountResultsWrapper, CountResults)
+class L1CountResultsWrapper(lm.RegressionResultsWrapper):
+ pass
+wrap.populate_wrapper(L1CountResultsWrapper, L1CountResults)
+
class BinaryResultsWrapper(lm.RegressionResultsWrapper):
pass
wrap.populate_wrapper(BinaryResultsWrapper, BinaryResults)
+class L1BinaryResultsWrapper(lm.RegressionResultsWrapper):
+ pass
+wrap.populate_wrapper(L1BinaryResultsWrapper, L1BinaryResults)
+
class MultinomialResultsWrapper(lm.RegressionResultsWrapper):
pass
wrap.populate_wrapper(MultinomialResultsWrapper, MultinomialResults)
+class L1MultinomialResultsWrapper(lm.RegressionResultsWrapper):
+ pass
+wrap.populate_wrapper(L1MultinomialResultsWrapper, L1MultinomialResults)
+
if __name__=="__main__":
import numpy as np
Please sign in to comment.
Something went wrong with that request. Please try again.