No description, website, or topics provided.
Switch branches/tags
Nothing to show
Clone or download
Latest commit e29cf54 Aug 6, 2018
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
reid revise models Jul 24, 2018
PCB.py first commit Jul 23, 2018
README.md update readme Jul 23, 2018
RPP.py first commit Jul 23, 2018
train_PCB.sh Update train_PCB.sh Aug 6, 2018
train_RPP.sh Update train_RPP.sh Aug 6, 2018

README.md

Part-based Convolutional Baseline for Person Retrieval and the Refined Part Pooling

Code for the paper Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline).

This code is ONLY released for academic use.

Preparation

Prerequisite: Python 2.7 and Pytorch 0.3+

  1. Install Pytorch

  2. Download dataset a. Market-1501 BaiduYun b. DukeMTMC-reIDBaiduYun (password:bhbh) c. Move them to ~/datasets/Market-1501/(DukeMTMC-reID)

train PCB

sh train_PCB.sh With Pytorch 0.4.0, we shall get about 93.0% rank-1 accuracy and 78.0% mAP on Market-1501.

train RPP

sh train_RPP.sh With Pytorch 0.4.0, we shall get about 93.5% rank-1 accuracy and 81.5% mAP on Market-1501.

Citiaion

Please cite this paper in your publications if it helps your research:

@inproceedings{sun2018PCB,
  author    = {Yifan Sun and
               Liang Zheng and
               Yi Yang and
			   Qi Tian and
               Shengjin Wang},
  title     = {Beyond Part Models: Person Retrieval with Refined Part Pooling (and A Strong Convolutional Baseline)},
  booktitle   = {ECCV},
  year      = {2018},
}