Skip to content

Commit

Permalink
rewritten with new axioms
Browse files Browse the repository at this point in the history
  • Loading branch information
vporton committed Nov 28, 2018
1 parent c6dad77 commit 1e2dd63
Showing 1 changed file with 65 additions and 61 deletions.
126 changes: 65 additions & 61 deletions chap-unfixed.tex
@@ -1,5 +1,8 @@
\chapter{Unfixed categories}

\fxwarning{This is a draft not thoroughly checked for
errors.}

\section{Axiomatics for unfixed morphisms}

\begin{defn}
Expand All @@ -20,7 +23,9 @@ \section{Axiomatics for unfixed morphisms}
\item $\id^{\mathcal{C}(A,B)}_X\in\Hom_{\mathcal{C}}(A,B)$
whenever $\mathfrak{A}\ni X\sqsubseteq [A]\sqcap[B]$;
\item $\id^{\mathcal{C}(A,A)}_{[A]} = 1^{\mathcal{C}}_A$;
\item $\id^{\mathcal{C}(B,C)}_Y \circ \id^{\mathcal{C}(A,B)}_X = \id^{\mathcal{C}(A,C)}_{X\sqcap Y}$.
\item $\id^{\mathcal{C}(B,C)}_Y \circ \id^{\mathcal{C}(A,B)}_X = \id^{\mathcal{C}(A,C)}_{X\sqcap Y}$;
\item $\forall A\in\mathfrak{A}\exists B\in\mathfrak{Z}:
A\sqsubseteq[B]$.
\end{enumerate}

\fxnote{In a future version of this text the above
Expand Down Expand Up @@ -156,13 +161,11 @@ \section{Image and domain}
\end{enumerate}
\end{prop}

\fxwarning{Not yet rewritten with new definition below this.}

\begin{proof}
$\operatorname{IM} f =
\setcond{Y \in \mathfrak{Z}}{\id^{\mathcal{C}(\Dst f,\Dst f)}_{[Y]\sqcap[\Dst f]} \circ f = f}$.

Suppose $Y\in\operatorname{IM}f$. Then take $Y'=[Y]\sqcap[\Dst f]$. We have $Y\sqsupseteq Y'$ and $Y'\in\operatorname{Im}f$. So $Y\in\mathscr{S}\operatorname{Im}f$. If $Y\in\mathscr{S}\operatorname{Im}f$ then $Y\in\operatorname{IM}f$ obviously.
Suppose $Y\in\operatorname{IM}f$. Then take $Y'=Y\sqcap\Dst f$. We have $Y\sqsupseteq Y'$ and $Y'\in\operatorname{Im}f$. So $Y\in\mathscr{S}\operatorname{Im}f$. If $Y\in\mathscr{S}\operatorname{Im}f$ then $Y\in\operatorname{IM}f$ obviously.
So $\operatorname{IM} f = \mathscr{S}\operatorname{Im} f$.

$\rsupfun{\Dst f\cap}\operatorname{IM}f\subseteq
Expand Down Expand Up @@ -239,16 +242,16 @@ \section{Image and domain}
\begin{enumerate}
\item For an ordered category~$\mathcal{C}$ with restricted identities
to be with ordered image it's enough that
$\id^{\mathcal{C}(\Dst f,\Dst f)}_X\circ f=f\land
$\id^{\mathcal{C}(\Dst f,\Dst f)}_{[X]}\circ f=f\land
g\sqsubseteq f\Rightarrow
\id^{\mathcal{C}(\Dst f,\Dst f)}_X\circ g=g$
\id^{\mathcal{C}(\Dst f,\Dst f)}_{[X]}\circ g=g$
for every parallel morphisms~$f$ and $g$ and
$\mathfrak{Z}\ni X\sqsubseteq\Dst f$.
\item For an ordered category~$\mathcal{C}$ with restricted identities
to be with ordered domain it's enough that
$f\circ\id^{\mathcal{C}(\Src f,\Src f)}_X=f\land
$f\circ\id^{\mathcal{C}(\Src f,\Src f)}_{[X]}=f\land
g\sqsubseteq f\Rightarrow
g\circ\id^{\mathcal{C}(\Src f,\Src f)}_X=g$
g\circ\id^{\mathcal{C}(\Src f,\Src f)}_{[X]}=g$
for every parallel morphisms~$f$ and $g$ and
$\mathfrak{Z}\ni X\sqsubseteq\Src f$.
\end{enumerate}
Expand Down Expand Up @@ -380,13 +383,13 @@ \section{Equivalent morphisms}
$\mathcal{E}^{B_0, B_1} \circ \mathcal{E}^{B_1, B_0} \circ g \circ
\mathcal{E}^{A_0, A_1} \circ \mathcal{E}^{A_1, A_0}\sqsupseteq g$;

$\id^{\mathcal{C} (B_1, B_1)}_{B_0 \sqcap B_1} \circ g \circ
\id^{\mathcal{C} (A_1, A_1)}_{A_0 \sqcap A_1} \sqsupseteq g$;
$\id^{\mathcal{C} (B_1, B_1)}_{B_0 \sqcap B_1} \circ g \sqsupseteq g$;
$\id^{\mathcal{C} (B_1, B_1)}_{B_0 \sqcap B_1} \circ g = g$;
$\id^{\mathcal{C} (B_1, B_1)}_{[B_0]\sqcap[B_1]} \circ g \circ
\id^{\mathcal{C} (A_1, A_1)}_{[A_0]\sqcap[A_1]} \sqsupseteq g$;
$\id^{\mathcal{C} (B_1, B_1)}_{[B_0]\sqcap[B_1]} \circ g \sqsupseteq g$;
$\id^{\mathcal{C} (B_1, B_1)}_{[B_0]\sqcap[B_1]} \circ g = g$;

$\id^{\mathcal{C} (B_0 \sqcap B_1, B_1)}_{B_0 \sqcap B_1} \circ
\id^{\mathcal{C} (B_1, B_0 \sqcap B_1)}_{B_0 \sqcap B_1} \circ g = g$;
$\id^{\mathcal{C} (B_0 \sqcap B_1, B_1)}_{[B_0]\sqcap[B_1]} \circ
\id^{\mathcal{C} (B_1, B_0 \sqcap B_1)}_{[B_0]\sqcap[B_1]} \circ g = g$;
$\mathcal{E}^{B_0 \sqcap B_1, B_1} \circ \mathcal{E}^{B_1, B_0 \sqcap B_1}
\circ g = g$. Thus $B_0 \sqcap B_1 \in \operatorname{Im} g$. Similarly $A_0 \sqcap A_1
\in \operatorname{Dom} g$.
Expand Down Expand Up @@ -491,17 +494,17 @@ \section{Equivalent morphisms}
$\iota_{A_1,B_1}\iota_{A_0,B_0}f=
\mathcal{E}^{B_0,B_1}\circ\mathcal{E}^{\Dst f,B_0}\circ f\circ
\mathcal{E}^{A_0,\Src f}\circ\mathcal{E}^{A_1,A_0}=
\id^{\mathcal{C}(B_0,B_1)}_{B_0\sqcap B_1}\circ\id^{\mathcal{C}(\Dst f,B_0)}_{\Dst f\sqcap B_0}
\id^{\mathcal{C}(B_0,B_1)}_{[B_0]\sqcap[B_1]}\circ\id^{\mathcal{C}(\Dst f,B_0)}_{[\Dst f]\sqcap[B_0]}
\circ f\circ
\id^{\mathcal{C}(A_0,\Src f)}_{A_0\sqcap\Src f}\circ
\id^{\mathcal{C}(A_1,A_0)}_{A_1\sqcap A_0}=
\id^{\mathcal{C}(\Dst f,B_1)}_{\Dst f\sqcap B_0\sqcap B_1}
\id^{\mathcal{C}(A_0,\Src f)}_{[A_0]\sqcap[\Src f]}\circ
\id^{\mathcal{C}(A_1,A_0)}_{[A_1]\sqcap[A_0]}=
\id^{\mathcal{C}(\Dst f,B_1)}_{[\Dst f]\sqcap[B_0]\sqcap[B_1]}
\circ f\circ
\id^{\mathcal{C}(A_1,\Src f)}_{A_0\sqcap A_1\sqcap\Src f}
\id^{\mathcal{C}(A_1,\Src f)}_{[A_0]\sqcap[A_1]\sqcap[\Src f]}
\sqsubseteq
\id^{\mathcal{C}(\Dst f,B_1)}_{\Dst f\sqcap B_1}
\id^{\mathcal{C}(\Dst f,B_1)}_{[\Dst f]\sqcap[B_1]}
\circ f\circ
\id^{\mathcal{C}(A_1,\Src f)}_{A_1\sqcap\Src f}=
\id^{\mathcal{C}(A_1,\Src f)}_{[A_1]\sqcap[\Src f]}=
\iota_{A_1,B_1}f$.
\end{proof}

Expand All @@ -513,25 +516,25 @@ \section{Binary product}
\begin{enumerate}
\item $\id^{\mathcal{C}(B,B)}_Y\circ f\circ\id^{\mathcal{C}(A,A)}_X=f\sqcap(X\times_{A,B}Y)$
(holding for every $A,B\in\mathfrak{Z}$,
$\mathfrak{A}\ni X\sqsubseteq A$,
$\mathfrak{A}\ni Y\sqsubseteq B$,
$\mathfrak{A}\ni X\sqsubseteq[A]$,
$\mathfrak{A}\ni Y\sqsubseteq[B]$,
$X\times_{A,B}Y\in\mathcal{C}(A,B)$
and morphism~$f\in\mathcal{C}(A,B)$);
\item $\iota_{A_1,B_1}(X\times_{A_0,B_0}Y)=
X\times_{A_1,B_1}Y$ whenever
$X\sqsubseteq A_0\sqcap A_1$ and $Y\sqsubseteq B_0\sqcap B_1$.
$X\sqsubseteq[A_0]\sqcap[A_1]$ and $Y\sqsubseteq[B_0]\sqcap[B_1]$.
\end{enumerate}
\end{defn}

\begin{prop}
$A\times_{A,B}B$ is the greatest morphism
$[A]\times_{A,B}[B]$ is the greatest morphism
$\top^{\mathcal{C}(A,B)}:A\to B$.
\end{prop}

\begin{proof}
It's enough to prove $f\sqcap(A\times_{A,B}B)=f$ for every
It's enough to prove $f\sqcap([A]\times_{A,B}[B])=f$ for every
$f:A\to B$. Really,
$f\sqcap(A\times_{A,B}B)=
$f\sqcap([A]\times_{A,B}[B])=
\id^{\mathcal{C}(B,B)}_B\circ f\circ\id^{\mathcal{C}(A,A)}_A=
1^B\circ f\circ 1^A=f$.
\end{proof}
Expand Down Expand Up @@ -702,26 +705,26 @@ \subsection{Restricted identities}
\begin{defn}
\emph{Restricted identity} for unfixed morphisms is
defined as: $\id_X = [\id^{\mathcal{C}(A,B)}_X]$ for
an $X\sqsubseteq A\sqcap B$.
an $X\sqsubseteq[A]\sqcap[B]$.
\end{defn}

We need to prove that it does not depend on the choice
of~$A$ and~$B$.

\begin{proof}
Let $\mathfrak{A}\ni X\sqsubseteq A_0\sqcap B_0$ and
$\mathfrak{A}\ni X\sqsubseteq A_1\sqcap B_1$ for
Let $\mathfrak{A}\ni X\sqsubseteq[A_0]\sqcap[B_0]$ and
$\mathfrak{A}\ni X\sqsubseteq[A_1]\sqcap[B_1]$ for
$A_0,B_0,A_1,B_1\in\mathfrak{Z}$. We need to prove
$\id^{\mathcal{C}(A_0,B_0)}_X\sim
\id^{\mathcal{C}(A_1,B_1)}_X$.

Really, $\iota_{A_1,B_1}\id^{\mathcal{C}(A_0,B_0)}_X =
\mathcal{E}^{B_0,B_1}\circ\id^{\mathcal{C}(A_0,B_0)}_X
\circ \mathcal{E}^{A_1,A_0} =
\id^{\mathcal{C}(B_0,B_1)}_{B_0\sqcap B_1}\circ
\id^{\mathcal{C}(B_0,B_1)}_{[B_0]\sqcap[B_1]}\circ
\id^{\mathcal{C}(A_0,B_0)}_X\circ
\id^{\mathcal{C}(A_1,A_0)}_{A_0\sqcap A_1} =
\id^{\mathcal{C}(A_1,B_1)}_{A_0\sqcap A_1\sqcap B_0\sqcap B_1\sqcap X} =
\id^{\mathcal{C}(A_1,A_0)}_{[A_0]\sqcap[A_1]} =
\id^{\mathcal{C}(A_1,B_1)}_{[A_0]\sqcap[A_1]\sqcap[B_0]\sqcap[B_1]\sqcap X} =
\id^{\mathcal{C}(A_1,B_1)}_X$.
Similarly
$\iota_{A_0,B_0}\id^{\mathcal{C}(A_1,B_1)}_X =
Expand All @@ -733,7 +736,7 @@ \subsection{Restricted identities}

\begin{prop}
$\id_Y\circ\id_X=\id_{X\sqcap Y}$ for
every~$X,Y\in\mathcal{A}$.
every~$X,Y\in\mathfrak{A}$.
\end{prop}

\begin{proof}
Expand Down Expand Up @@ -766,14 +769,14 @@ \subsection{Poset of unfixed morphisms}
\sqsubseteq
\mathcal{E}^{\Dst g,B}\circ g\circ\mathcal{E}^{A,\Src g}
\Leftrightarrow
\id^{\mathcal{C}(\Dst f,B)}_{B\sqcap\Dst f}\circ f\circ\id^{\mathcal{C}(A,\Src f)}_{A\sqcap\Src f}
\id^{\mathcal{C}(\Dst f,B)}_{[B]\sqcap[\Dst f]}\circ f\circ\id^{\mathcal{C}(A,\Src f)}_{[A]\sqcap[\Src f]}
\sqsubseteq
\id^{\mathcal{C}(\Dst g,B)}_{B\sqcap\Dst g}\circ g\circ\id^{\mathcal{C}(A,\Src g)}_{A\sqcap\Src g}
\id^{\mathcal{C}(\Dst g,B)}_{[B]\sqcap[\Dst g]}\circ g\circ\id^{\mathcal{C}(A,\Src g)}_{[A]\sqcap[\Src g]}
\Leftarrow f\sqsubseteq g$ because
$\id^{\mathcal{C}(\Dst f,B)}_{B\sqcap\Dst f}=
\id^{\mathcal{C}(\Dst g,B)}_{B\sqcap\Dst g}$ and
$\id^{\mathcal{C}(A,\Src f)}_{A\sqcap\Src f}=
\id^{\mathcal{C}(A,\Src g)}_{A\sqcap\Src g}$.
$\id^{\mathcal{C}(\Dst f,B)}_{[B]\sqcap[\Dst f]}=
\id^{\mathcal{C}(\Dst g,B)}_{[B]\sqcap[\Dst g]}$ and
$\id^{\mathcal{C}(A,\Src f)}_{[A]\sqcap[\Src f]}=
\id^{\mathcal{C}(A,\Src g)}_{[A]\sqcap[\Src g]}$.
\end{proof}

\begin{cor}\label{unxif-org-cong}
Expand Down Expand Up @@ -970,13 +973,13 @@ \subsection{Domain and image of unfixed morphisms}
\id^{\mathcal{C}(Y\sqcup\Dst f,Y\sqcup\Dst f)}_{Y}\circ
\mathcal{E}^{\Dst f,Y\sqcup\Dst f}\circ f=
\mathcal{E}^{\Dst f,Y\sqcup\Dst f}\circ f\Leftrightarrow
\id^{\mathcal{C}(\Dst f,Y\sqcup\Dst f)}_{Y\sqcap\Dst f}
\id^{\mathcal{C}(\Dst f,Y\sqcup\Dst f)}_{[Y]\sqcap[\Dst f]}
\circ f=\mathcal{E}^{\Dst f,Y\sqcup\Dst f}
\circ f\Leftrightarrow
\mathcal{E}^{Y\sqcup\Dst f,\Dst f}
\circ \id^{\mathcal{C}(\Dst f,Y\sqcup\Dst f)}_{Y\sqcap\Dst f}
\circ \id^{\mathcal{C}(\Dst f,Y\sqcup\Dst f)}_{[Y]\sqcap[\Dst f]}
\circ f=f\Leftrightarrow
\id^{\mathcal{C}(\Dst f,\Dst f)}_{Y\sqcap\Dst f}\circ f=f
\id^{\mathcal{C}(\Dst f,\Dst f)}_{[Y]\sqcap[\Dst f]}\circ f=f
Y\in\operatorname{IM}f$.
\end{proof}

Expand Down Expand Up @@ -1160,8 +1163,8 @@ \subsection{Binary product morphism}
For a category~$\mathcal{C}$ with binary product morphism
and $X,Y\in\mathfrak{A}$ define
$X\times Y=[X\times_{A,B}Y]$ where
$\mathfrak{Z}\ni A\sqsupseteq X$ and
$\mathfrak{Z}\ni B\sqsupseteq Y$.
$A\in\mathfrak{Z}$, $[A]\sqsupseteq X$,
$B\in\mathfrak{Z}$, $[B]\sqsupseteq Y$.
(Such~$A$ and~$B$ exist by an axiom of categories with
restricted identities.)
\end{defn}
Expand All @@ -1170,10 +1173,10 @@ \subsection{Binary product morphism}

\begin{proof}
Let
$\mathfrak{Z}\ni A_0\sqsupseteq X$,
$\mathfrak{Z}\ni B_0\sqsupseteq Y$,
$\mathfrak{Z}\ni A_1\sqsupseteq X$,
$\mathfrak{Z}\ni B_1\sqsupseteq Y$.
$A_0\in\mathfrak{Z}$, $[A_0]\sqsupseteq X$,
$B_0\in\mathfrak{Z}$, $[B_0]\sqsupseteq Y$,
$A_1\in\mathfrak{Z}$, $[A_1]\sqsupseteq X$,
$B_1\in\mathfrak{Z}$, $[B_1]\sqsupseteq Y$.
We need to prove $X\times_{A_0,B_0}Y\sim X\times_{A_1,B_1}Y$,
but it trivially follows from an axiom in the definition of
category with binary product morphism.
Expand All @@ -1186,10 +1189,11 @@ \subsection{Binary product morphism}
\end{prop}

\begin{proof}
Take $\mathfrak{Z}\ni A_0\sqsupseteq X_0$,
Take $\mathfrak{Z}\ni A_1\sqsupseteq X_1$,
Take $\mathfrak{Z}\ni B_0\sqsupseteq Y_0$,
Take $\mathfrak{Z}\ni B_1\sqsupseteq Y_1$.
Take
$A_0\in\mathfrak{Z}$, $[A_0]\sqsupseteq X_0$,
$B_0\in\mathfrak{Z}$, $[B_0]\sqsupseteq Y_0$,
$A_1\in\mathfrak{Z}$, $[A_1]\sqsupseteq X_1$,
$B_1\in\mathfrak{Z}$, $[B_1]\sqsupseteq Y_1$.

Then
$(X_0\times Y_0)\sqcap(X_1\times Y_1)=
Expand All @@ -1212,16 +1216,16 @@ \subsection{Binary product morphism}
$f\square_{A,B}=[\iota_{A,B}F']=
[\mathcal{E}^{B\sqcup\Dst F,B}\circ F'\circ
\mathcal{E}^{A,A\sqcup\Src F}]=
[\id^{\mathcal{C}(B\sqcup\Dst F,B)}_B\circ F'\circ
\id^{\mathcal{C}(A,A\sqcup\Src F)}_A]=
[\id^{\mathcal{C}(B\sqcup\Dst F,B)}_B]\circ [F']\circ
[\id^{\mathcal{C}(A,A\sqcup\Src F)}_A]=
[\id^{\mathcal{C}(B\sqcup\Dst F,B\sqcup\Dst F)}_B]\circ
[\id^{\mathcal{C}(B\sqcup\Dst F,B)}_{[B]}\circ F'\circ
\id^{\mathcal{C}(A,A\sqcup\Src F)}_{[A]}]=
[\id^{\mathcal{C}(B\sqcup\Dst F,B)}_{[B]}]\circ [F']\circ
[\id^{\mathcal{C}(A,A\sqcup\Src F)}_{[A]}]=
[\id^{\mathcal{C}(B\sqcup\Dst F,B\sqcup\Dst F)}_{[B]}]\circ
[F']\circ
[\id^{\mathcal{C}(A\sqcup\Src F,A\sqcup\Src F)}_A]=
[\id^{\mathcal{C}(B\sqcup\Dst F,B\sqcup\Dst F)}_B\circ
[\id^{\mathcal{C}(A\sqcup\Src F,A\sqcup\Src F)}_{[A]}]=
[\id^{\mathcal{C}(B\sqcup\Dst F,B\sqcup\Dst F)}_{[B]}\circ
F'\circ
\id^{\mathcal{C}(A\sqcup\Src F,A\sqcup\Src F)}_A]=
\id^{\mathcal{C}(A\sqcup\Src F,A\sqcup\Src F)}_{[A]}]=
[F'\sqcap(A\times_{A\sqcup\Src F,B\sqcup\Dst F}B)]=
[F']\sqcap[A\times_{A\sqcup\Src F,B\sqcup\Dst F}B]=
f\sqcap(A\times B)$.
Expand Down

0 comments on commit 1e2dd63

Please sign in to comment.