Skip to content


Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?


Failed to load latest commit information.
Latest commit message
Commit time

Geographic Generalization in Airborne RGB Deep Learning Tree Detection

Ben. G. Weinstein, Sergio Marconi, Stephanie Bohlman, Alina Zare, Ethan White


DeepLidar is a keras retinanet implementation for predicting individual tree crowns in RGB imagery.

How can I train new data?

DeepLidar uses a semi-supervised framework for model training. For generating lidar-derived training data see (). I recommend using a conda environments to manage python dependencies.

  1. Create conda environment and install dependencies
conda env create --name DeepForest -f=generic_environment.yml

Clone the fork of the retinanet repo and install in local environment

conda activate DeepForest
git clone
cd keras-retinanet
pip install .
  1. Update config paths

All paths are hard coded into _config.yml

  1. Train new model with new hand annotations
python --retrain

How can I use pre-built models to predict new images.

Check out a demo ipython notebook:

Where are the data?

The Neon Trees Benchmark dataset is soon to be published. All are welcome to use it. Currently under curation (in progress):

For a static version of the dataset that reflects annotations at the time of submission, see dropbox link here

Published articles

Our first article was published in Remote Sensing and can be found here.

This codebase is constantly evolving and improving. To access the code at the time of publication, see Releases. The results of the full model can be found on our comet page.


LIDAR and RGB Deep Learning Model for Individual Tree Segmentation






No packages published