Skip to content

Congratulation to DeepMind! This is a reengineering implementation (on behalf of many other git repo in /support/) of DeepMind's Oct19th publication: [Mastering the Game of Go without Human Knowledge]. The supervised learning approach is more practical for individuals. (This repository has single purpose of education only)

master
Switch branches/tags
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
elo
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AlphaGOZero (python tensorflow implementation)

This is a trial implementation of DeepMind's Oct19th publication: Mastering the Game of Go without Human Knowledge.

DeepMind release AlphaZero Teaching Go. It's a lot of fun!


From Paper

Pure RL has outperformed supervised learning+RL agent

SL evaluation

Download trained model

  1. https://drive.google.com/drive/folders/1Xs8Ly3wjMmXjH2agrz25Zv2e5-yqQKaP?usp=sharing

  2. Place under ./savedmodels/large20/


Set up

Install requirement

python 3.6 tensorflow/tensorflow-gpu (version 1.4, version >= 1.5 can't load trained models)

pip install -r requirement.txt

Download Dataset (kgs 4dan)

Under repo's root dir

cd data/download
chmod +x download.sh
./download.sh

Preprocess Data

It is only an example, feel free to assign your local dataset directory

python preprocess.py preprocess ./data/SGFs/kgs-*

Train A Model

python main.py --mode=train

Play Against An A.I.

python main.py --mode=gtp —-gtp_poliy=greedypolicy --model_path='./savedmodels/your_model.ckpt'

Play in Sabaki

  1. In console:
which python

add result to the headline of main.py with #! prefix.

  1. Add the path of main.py to Sabaki's manage Engine with argument --mode=gtp

TODO:

  • AlphaGo Zero Architecture
  • Supervised Training
  • Self Play pipeline
  • Go Text Protocol
  • Sabaki Engine enabled
  • Tabula rasa (failed)
  • Distributed learning

Credit (orderless):

*Brain Lee *Ritchie Ng *Samuel Graván *森下 健 *yuanfengpang

About

Congratulation to DeepMind! This is a reengineering implementation (on behalf of many other git repo in /support/) of DeepMind's Oct19th publication: [Mastering the Game of Go without Human Knowledge]. The supervised learning approach is more practical for individuals. (This repository has single purpose of education only)

Topics

Resources

License

Releases

No releases published

Packages

No packages published