Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

post

Several models for POS Tagging

Already implemented models:

  • BPNN+CRF
  • BiLSTM+CRF
  • CHAR+BiLSTM+CRF

Requirements

python == 3.6.5
pytorch == 0.4.1

Usage

Commands

$ git clone https://github.com/zysite/post.git
$ cd post
# eg: BiLSTM+CHAR+CRF
$ python run.py --model=lstm_char --crf

Arguments

$ python run.py -h
usage: run.py [-h] [--model {bpnn_crf,lstm_crf,char_lstm_crf}] [--drop DROP]
              [--batch_size BATCH_SIZE] [--epochs EPOCHS]
              [--interval INTERVAL] [--eta ETA] [--threads THREADS]
              [--seed SEED] [--file FILE]

Create several models for POS Tagging.

optional arguments:
  -h, --help            show this help message and exit
  --model {bpnn_crf,lstm_crf,char_lstm_crf}, -m {bpnn_crf,lstm_crf,char_lstm_crf}
                        choose the model for POS Tagging
  --drop DROP           set the prob of dropout
  --batch_size BATCH_SIZE
                        set the size of batch
  --epochs EPOCHS       set the max num of epochs
  --interval INTERVAL   set the max interval to stop
  --eta ETA             set the learning rate of training
  --threads THREADS, -t THREADS
                        set the max num of threads
  --seed SEED, -s SEED  set the seed for generating random numbers
  --file FILE, -f FILE  set where to store the model

Structures

# BPNN+CRF
BPNN_CRF(
  (embed): Embedding(54304, 100)
  (hid): Sequential(
    (0): Linear(in_features=500, out_features=300, bias=True)
    (1): ReLU()
  )
  (out): Linear(in_features=300, out_features=32, bias=True)
  (crf): CRF()
  (drop): Dropout(p=0.5)
)
# BiLSTM+CRF
LSTM_CRF(
  (embed): Embedding(54304, 100)
  (lstm): LSTM(100, 150, batch_first=True, bidirectional=True)
  (out): Linear(in_features=300, out_features=32, bias=True)
  (crf): CRF()
  (drop): Dropout(p=0.5)
)
# CHAR+BiLSTM+CRF
CHAR_LSTM_CRF(
  (embed): Embedding(54304, 100)
  (char_lstm): CharLSTM(
    (embed): Embedding(7478, 100)
    (lstm): LSTM(100, 100, batch_first=True, bidirectional=True)
  )
  (word_lstm): LSTM(300, 150, batch_first=True, bidirectional=True)
  (out): Linear(in_features=300, out_features=32, bias=True)
  (crf): CRF()
  (drop): Dropout(p=0.5)
)

References

About

Several models for POS Tagging

Topics

Resources

License

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.