-
Notifications
You must be signed in to change notification settings - Fork 534
/
txsigner.go
242 lines (184 loc) · 5.61 KB
/
txsigner.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
package crypto
import (
"crypto/ecdsa"
"fmt"
"math/big"
"math/bits"
"github.com/0xPolygon/polygon-edge/chain"
"github.com/0xPolygon/polygon-edge/helper/keccak"
"github.com/0xPolygon/polygon-edge/types"
"github.com/umbracle/fastrlp"
)
// TxSigner is a utility interface used to recover data from a transaction
type TxSigner interface {
// Hash returns the hash of the transaction
Hash(tx *types.Transaction) types.Hash
// Sender returns the sender of the transaction
Sender(tx *types.Transaction) (types.Address, error)
// SignTx signs a transaction
SignTx(tx *types.Transaction, priv *ecdsa.PrivateKey) (*types.Transaction, error)
// CalculateV calculates the V value based on the type of signer used
CalculateV(parity byte) []byte
}
// NewSigner creates a new signer object (EIP155 or FrontierSigner)
func NewSigner(forks chain.ForksInTime, chainID uint64) TxSigner {
var signer TxSigner
if forks.EIP155 {
signer = &EIP155Signer{chainID: chainID}
} else {
signer = &FrontierSigner{}
}
return signer
}
type FrontierSigner struct {
}
var signerPool fastrlp.ArenaPool
// calcTxHash calculates the transaction hash (keccak256 hash of the RLP value)
func calcTxHash(tx *types.Transaction, chainID uint64) types.Hash {
a := signerPool.Get()
v := a.NewArray()
v.Set(a.NewUint(tx.Nonce))
v.Set(a.NewBigInt(tx.GasPrice))
v.Set(a.NewUint(tx.Gas))
if tx.To == nil {
v.Set(a.NewNull())
} else {
v.Set(a.NewCopyBytes((*tx.To).Bytes()))
}
v.Set(a.NewBigInt(tx.Value))
v.Set(a.NewCopyBytes(tx.Input))
// EIP155
if chainID != 0 {
v.Set(a.NewUint(chainID))
v.Set(a.NewUint(0))
v.Set(a.NewUint(0))
}
hash := keccak.Keccak256Rlp(nil, v)
signerPool.Put(a)
return types.BytesToHash(hash)
}
// Hash is a wrapper function for the calcTxHash, with chainID 0
func (f *FrontierSigner) Hash(tx *types.Transaction) types.Hash {
return calcTxHash(tx, 0)
}
// Magic numbers from Ethereum, used in v calculation
var (
big27 = big.NewInt(27)
big35 = big.NewInt(35)
)
// Sender decodes the signature and returns the sender of the transaction
func (f *FrontierSigner) Sender(tx *types.Transaction) (types.Address, error) {
refV := big.NewInt(0)
if tx.V != nil {
refV.SetBytes(tx.V.Bytes())
}
refV.Sub(refV, big27)
sig, err := encodeSignature(tx.R, tx.S, byte(refV.Int64()))
if err != nil {
return types.Address{}, err
}
pub, err := Ecrecover(f.Hash(tx).Bytes(), sig)
if err != nil {
return types.Address{}, err
}
buf := Keccak256(pub[1:])[12:]
return types.BytesToAddress(buf), nil
}
// SignTx signs the transaction using the passed in private key
func (f *FrontierSigner) SignTx(
tx *types.Transaction,
privateKey *ecdsa.PrivateKey,
) (*types.Transaction, error) {
tx = tx.Copy()
h := f.Hash(tx)
sig, err := Sign(privateKey, h[:])
if err != nil {
return nil, err
}
tx.R = new(big.Int).SetBytes(sig[:32])
tx.S = new(big.Int).SetBytes(sig[32:64])
tx.V = new(big.Int).SetBytes(f.CalculateV(sig[64]))
return tx, nil
}
// calculateV returns the V value for transactions pre EIP155
func (f *FrontierSigner) CalculateV(parity byte) []byte {
reference := big.NewInt(int64(parity))
reference.Add(reference, big27)
return reference.Bytes()
}
// NewEIP155Signer returns a new EIP155Signer object
func NewEIP155Signer(chainID uint64) *EIP155Signer {
return &EIP155Signer{chainID: chainID}
}
type EIP155Signer struct {
chainID uint64
}
// Hash is a wrapper function that calls calcTxHash with the EIP155Signer's chainID
func (e *EIP155Signer) Hash(tx *types.Transaction) types.Hash {
return calcTxHash(tx, e.chainID)
}
// Sender returns the transaction sender
func (e *EIP155Signer) Sender(tx *types.Transaction) (types.Address, error) {
protected := true
// Check if v value conforms to an earlier standard (before EIP155)
bigV := big.NewInt(0)
if tx.V != nil {
bigV.SetBytes(tx.V.Bytes())
}
if vv := bigV.Uint64(); bits.Len(uint(vv)) <= 8 {
protected = vv != 27 && vv != 28
}
if !protected {
return (&FrontierSigner{}).Sender(tx)
}
// Reverse the V calculation to find the original V in the range [0, 1]
// v = CHAIN_ID * 2 + 35 + {0, 1}
mulOperand := big.NewInt(0).Mul(big.NewInt(int64(e.chainID)), big.NewInt(2))
bigV.Sub(bigV, mulOperand)
bigV.Sub(bigV, big35)
sig, err := encodeSignature(tx.R, tx.S, byte(bigV.Int64()))
if err != nil {
return types.Address{}, err
}
pub, err := Ecrecover(e.Hash(tx).Bytes(), sig)
if err != nil {
return types.Address{}, err
}
buf := Keccak256(pub[1:])[12:]
return types.BytesToAddress(buf), nil
}
// SignTx signs the transaction using the passed in private key
func (e *EIP155Signer) SignTx(
tx *types.Transaction,
privateKey *ecdsa.PrivateKey,
) (*types.Transaction, error) {
tx = tx.Copy()
h := e.Hash(tx)
sig, err := Sign(privateKey, h[:])
if err != nil {
return nil, err
}
tx.R = new(big.Int).SetBytes(sig[:32])
tx.S = new(big.Int).SetBytes(sig[32:64])
tx.V = new(big.Int).SetBytes(e.CalculateV(sig[64]))
return tx, nil
}
// calculateV returns the V value for transaction signatures. Based on EIP155
func (e *EIP155Signer) CalculateV(parity byte) []byte {
reference := big.NewInt(int64(parity))
reference.Add(reference, big35)
mulOperand := big.NewInt(0).Mul(big.NewInt(int64(e.chainID)), big.NewInt(2))
reference.Add(reference, mulOperand)
return reference.Bytes()
}
// encodeSignature generates a signature value based on the R, S and V value
func encodeSignature(R, S *big.Int, V byte) ([]byte, error) {
if !ValidateSignatureValues(V, R, S) {
return nil, fmt.Errorf("invalid txn signature")
}
sig := make([]byte, 65)
copy(sig[32-len(R.Bytes()):32], R.Bytes())
copy(sig[64-len(S.Bytes()):64], S.Bytes())
sig[64] = V
return sig, nil
}