-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_expert.py
240 lines (197 loc) · 10.5 KB
/
train_expert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from argparse import ArgumentParser
from tqdm import tqdm
from pathlib import Path
import random
import numpy as np
import torch
from torch import nn, optim
from torch.optim import lr_scheduler
from torch.nn.functional import one_hot, cross_entropy
from torch.utils.data import DataLoader
from torch.backends import cudnn
import timm, clip
from torchvision.models import vit_b_16, ViT_B_16_Weights
from models.modules import Prompter
from domainbed import get_dataset, get_domains_and_classes
parser = ArgumentParser()
parser.add_argument('--gpu', default=0, type=int)
parser.add_argument('--seed', default=None, type=int)
parser.add_argument('--model', default='vit_base_patch16_clip_224.openai')
parser.add_argument('--init-param', type=float, default=0.03)
parser.add_argument('--constant-init', type=float, default=None)
parser.add_argument('--meta-init', type=str, default=None)
parser.add_argument('--zero-init', action='store_true', default=False)
parser.add_argument('--unif-init', action='store_true', default=False)
parser.add_argument('--prompt-size', type=int, default=30)
parser.add_argument('--dataset', default='pacs')
parser.add_argument('--domain', default='p')
parser.add_argument('--make-anchor', action='store_true', default=False)
parser.add_argument('--use-anchor', action='store_true', default=False)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--epoch', type=int, default=200)
parser.add_argument('--lr', type=float, default=1.0E+4)
parser.add_argument('--early-stop', type=float, default=None)
parser.add_argument('--manual-tag', type=str, default=None)
CFG = parser.parse_args()
DEVICE = CFG.gpu
SEED = torch.initial_seed() if CFG.seed is None else CFG.seed
random.seed(SEED)
np.random.seed(SEED)
cudnn.deterministic = CFG.seed is not None
cudnn.benchmark = not cudnn.deterministic
torch.cuda.set_device(DEVICE)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
if CFG.make_anchor and CFG.use_anchor:
raise ValueError("'make-anchor' and 'use-anchor' are mutually exclusive.")
if (CFG.meta_init is not None) + CFG.zero_init + CFG.unif_init > 1:
raise ValueError("'meta-init', 'zero-init' and 'unif-init' are mutually exclusive.")
EXP_DIR = Path('./log').joinpath('experts')
EXP_DIR.mkdir(parents=True, exist_ok=True)
if CFG.manual_tag is not None:
CKPT_FILENAME = EXP_DIR.joinpath(f'{CFG.manual_tag}.pt')
elif CFG.make_anchor:
CKPT_FILENAME = EXP_DIR.joinpath(f'{CFG.model}_{CFG.dataset.lower()}_{CFG.domain.lower()}_anch_{CFG.prompt_size}.pt')
elif CFG.use_anchor:
CKPT_FILENAME = EXP_DIR.joinpath(f'{CFG.model}_{CFG.dataset.lower()}_{CFG.domain.lower()}_vect_{CFG.prompt_size}.pt')
elif CFG.meta_init is not None:
CKPT_FILENAME = EXP_DIR.joinpath(f'{CFG.model}_{CFG.dataset.lower()}_{CFG.domain.lower()}_meta_{CFG.prompt_size}.pt')
elif CFG.zero_init:
CKPT_FILENAME = EXP_DIR.joinpath(f'{CFG.model}_{CFG.dataset.lower()}_{CFG.domain.lower()}_zero_{CFG.prompt_size}.pt')
elif CFG.unif_init:
CKPT_FILENAME = EXP_DIR.joinpath(f'{CFG.model}_{CFG.dataset.lower()}_{CFG.domain.lower()}_unif_{CFG.prompt_size}.pt')
else:
CKPT_FILENAME = EXP_DIR.joinpath(f'{CFG.model}_{CFG.dataset.lower()}_{CFG.domain.lower()}_{CFG.prompt_size}.pt')
print(f'{CKPT_FILENAME=}')
META_DIR = EXP_DIR.joinpath('meta')
META_INIT_FILENAME = META_DIR.joinpath(f'{CFG.model}_{CFG.meta_init}.pt')
domains, classes = get_domains_and_classes(CFG.dataset)
src_dataset, tar_dataset = get_dataset(CFG.dataset, target=CFG.domain)
if CFG.make_anchor:
tar_dataset = src_dataset
def seed_worker(worker_id):
np.random.seed(SEED)
random.seed(SEED)
g = torch.Generator()
g.manual_seed(0)
loader_kwargs = dict(
# dataset=tar_dataset,
batch_size=CFG.batch_size,
num_workers=8,
worker_init_fn=seed_worker,
generator=g,
)
train_loader = DataLoader(tar_dataset, shuffle=True, **loader_kwargs)
valid_loader = DataLoader(src_dataset, shuffle=False, **loader_kwargs)
if CFG.use_anchor:
anch_filename = EXP_DIR.joinpath(f'{CFG.model}_{CFG.dataset.lower()}_{CFG.domain.lower()}_anch_{CFG.prompt_size}.pt')
anchor_state_dict = torch.load(anch_filename)['best_state_dict']
anchor = Prompter(224, CFG.prompt_size, init=CFG.init_param)
anchor.load_state_dict(anchor_state_dict)
anchor = anchor.prompt.clone().detach().cuda(DEVICE)
else:
anchor = 0.0
prompter = Prompter(224, CFG.prompt_size, init=CFG.init_param).cuda(DEVICE)
with torch.no_grad():
if CFG.meta_init is not None:
prompter_state_dict = torch.load(META_INIT_FILENAME, map_location='cpu')
prompter.load_state_dict(prompter_state_dict)
elif CFG.zero_init:
prompter.prompt_t = nn.Parameter(torch.zeros_like(prompter.prompt_t))
prompter.prompt_b = nn.Parameter(torch.zeros_like(prompter.prompt_b))
prompter.prompt_l = nn.Parameter(torch.zeros_like(prompter.prompt_l))
prompter.prompt_r = nn.Parameter(torch.zeros_like(prompter.prompt_r))
elif CFG.unif_init:
prompter.prompt_t = nn.Parameter((torch.rand_like(prompter.prompt_t) * 2 - 1) * CFG.init_param)
prompter.prompt_b = nn.Parameter((torch.rand_like(prompter.prompt_b) * 2 - 1) * CFG.init_param)
prompter.prompt_l = nn.Parameter((torch.rand_like(prompter.prompt_l) * 2 - 1) * CFG.init_param)
prompter.prompt_r = nn.Parameter((torch.rand_like(prompter.prompt_r) * 2 - 1) * CFG.init_param)
elif CFG.constant_init:
prompter.prompt_t = nn.Parameter(torch.ones_like(prompter.prompt_t) * CFG.constant_init)
prompter.prompt_b = nn.Parameter(torch.ones_like(prompter.prompt_b) * CFG.constant_init)
prompter.prompt_l = nn.Parameter(torch.ones_like(prompter.prompt_l) * CFG.constant_init)
prompter.prompt_r = nn.Parameter(torch.ones_like(prompter.prompt_r) * CFG.constant_init)
else:
prompter.prompt_t = nn.Parameter(torch.randn_like(prompter.prompt_t) * CFG.init_param)
prompter.prompt_b = nn.Parameter(torch.randn_like(prompter.prompt_b) * CFG.init_param)
prompter.prompt_l = nn.Parameter(torch.randn_like(prompter.prompt_l) * CFG.init_param)
prompter.prompt_r = nn.Parameter(torch.randn_like(prompter.prompt_r) * CFG.init_param)
if CFG.model == 'resnet50.clip':
net: nn.Module = clip.load('RN50', device='cpu')[0].visual.cuda(DEVICE)
head: nn.Module = net.attnpool.c_proj
elif CFG.model == 'vit_base_patch16.tv_in1k':
net: nn.Module = vit_b_16(weights=ViT_B_16_Weights.IMAGENET1K_V1).cuda(DEVICE)
head: nn.Module = net.heads.head
else:
net: nn.Module = timm.create_model(CFG.model, pretrained=True).cuda(DEVICE)
head: nn.Module = net.get_classifier()
head.weight = nn.Parameter(head.weight[:len(classes)])
if head.bias is not None:
head.bias = nn.Parameter(head.bias[:len(classes)])
head.out_features = len(classes)
optimizer = optim.SGD(prompter.parameters(), lr=CFG.lr, momentum=0.9)
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[150, 180, 210], gamma=0.1)
with tqdm(range(1, CFG.epoch + 1), desc='EPOCH', position=1, leave=False, dynamic_ncols=True) as epoch_bar:
best_epoch, best_accuracy, best_state_dict = -1, -1, None
lr_list, loss_list, accuracy_list = [], [], []
for epoch in epoch_bar:
with tqdm(train_loader, desc='TRAIN', position=2, leave=False, dynamic_ncols=True) as train_bar:
loss, match, total = 0, 0, 0
net.train()
prompter.train()
for inputs, targets in train_bar:
batch_size = inputs.size(0)
inputs, targets = inputs.cuda(DEVICE), targets.cuda(DEVICE)
onehots = one_hot(targets, len(classes)).float().cuda(DEVICE)
prompted_inputs = prompter(inputs) + anchor
outs = net(prompted_inputs)
batch_loss = cross_entropy(outs, onehots)
optimizer.zero_grad()
batch_loss.backward()
optimizer.step()
loss += (batch_loss * batch_size).item()
match += (targets == outs.argmax(dim=1)).sum().item()
total += batch_size
train_loss = loss / total
train_accuracy = match / total
train_bar.set_postfix_str(f'loss={train_loss:.3f} | top-1={train_accuracy * 100:.2f}%')
scheduler.step(epoch)
lr_list.append(optimizer.param_groups[0]['lr'])
loss_list.append(train_loss)
with tqdm(valid_loader, desc='VALID', position=2, leave=False, dynamic_ncols=True) as valid_bar, torch.no_grad():
loss, match, total = 0, 0, 0
net.eval()
prompter.eval()
for inputs, targets in valid_bar:
batch_size = inputs.size(0)
inputs, targets = inputs.cuda(DEVICE), targets.cuda(DEVICE)
onehots = one_hot(targets, len(classes)).float().cuda(DEVICE)
prompted_inputs = prompter(inputs) + anchor
outs = net(prompted_inputs)
batch_loss = cross_entropy(outs, onehots)
loss += (batch_loss * batch_size).item()
match += (targets == outs.argmax(dim=1)).sum().item()
total += batch_size
valid_loss = loss / total
valid_accuracy = match / total
valid_bar.set_postfix_str(f'loss={valid_loss:.3f} | top-1={valid_accuracy * 100:.2f}%')
accuracy_list.append(valid_accuracy)
if valid_accuracy >= best_accuracy:
best_accuracy = valid_accuracy
best_epoch = epoch
best_state_dict = {key: val.clone().cpu() for key, val in prompter.state_dict().items()}
epoch_bar.set_postfix_str(f'loss={valid_loss:.3f} | top-1={valid_accuracy * 100:.2f}% @ {epoch}')
torch.save({
'cfg': CFG,
'epoch': best_epoch,
'accuracy': best_accuracy,
'lr_list': lr_list,
'loss_list': loss_list,
'accuracy_list': accuracy_list,
'best_state_dict': best_state_dict,
'last_state_dict': {key: val.clone().cpu() for key, val in prompter.state_dict().items()},
}, CKPT_FILENAME)
if CFG.early_stop and (best_accuracy * 100.0 >= CFG.early_stop):
print(f'Early Stop at {best_epoch} epoch, {best_accuracy * 100:.2f}%')
break
print(f'Best: loss={loss_list[best_epoch - 1]:.3f} | top-1={best_accuracy * 100:.2f}% @ {best_epoch}')