forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 1
/
perfect_matching_test.cc
356 lines (310 loc) · 12.2 KB
/
perfect_matching_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/graph/perfect_matching.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <limits>
#include <random>
#include <vector>
#include "absl/random/random.h"
#include "absl/types/span.h"
#include "gtest/gtest.h"
#include "ortools/base/gmock.h"
#include "ortools/linear_solver/linear_solver.pb.h"
#include "ortools/linear_solver/solve_mp_model.h"
namespace operations_research {
namespace {
TEST(MinCostPerfectMatchingTest, Empty) {
MinCostPerfectMatching matcher(0);
ASSERT_EQ(matcher.Solve(), MinCostPerfectMatching::OPTIMAL);
EXPECT_EQ(matcher.OptimalCost(), 0);
EXPECT_EQ(matcher.Matches().size(), 0);
}
TEST(MinCostPerfectMatchingTest, OptimumMatching) {
MinCostPerfectMatching matcher(4);
matcher.AddEdgeWithCost(0, 2, 0);
matcher.AddEdgeWithCost(0, 3, 2);
matcher.AddEdgeWithCost(1, 2, 3);
matcher.AddEdgeWithCost(1, 3, 4);
ASSERT_EQ(matcher.Solve(), MinCostPerfectMatching::OPTIMAL);
EXPECT_EQ(matcher.OptimalCost(), 4);
EXPECT_EQ(matcher.Matches().size(), 4);
EXPECT_EQ(matcher.Match(0), 2);
EXPECT_EQ(matcher.Match(1), 3);
EXPECT_EQ(matcher.Match(2), 0);
EXPECT_EQ(matcher.Match(3), 1);
}
TEST(MinCostPerfectMatchingTest, BipartiteInfeasibleProblem) {
MinCostPerfectMatching matcher(4);
matcher.AddEdgeWithCost(0, 3, 2);
matcher.AddEdgeWithCost(0, 3, 10);
matcher.AddEdgeWithCost(1, 3, 3);
matcher.AddEdgeWithCost(1, 3, 20);
ASSERT_EQ(matcher.Solve(), MinCostPerfectMatching::INFEASIBLE);
}
TEST(MinCostPerfectMatchingTest, LargerBipartiteInfeasibleProblem) {
MinCostPerfectMatching matcher(10);
matcher.AddEdgeWithCost(0, 5, 0);
matcher.AddEdgeWithCost(0, 6, 2);
matcher.AddEdgeWithCost(1, 5, 3);
matcher.AddEdgeWithCost(1, 6, 4);
matcher.AddEdgeWithCost(2, 5, 4);
matcher.AddEdgeWithCost(2, 6, 4);
matcher.AddEdgeWithCost(3, 7, 4);
matcher.AddEdgeWithCost(3, 8, 4);
matcher.AddEdgeWithCost(3, 9, 4);
matcher.AddEdgeWithCost(4, 7, 4);
matcher.AddEdgeWithCost(4, 8, 4);
matcher.AddEdgeWithCost(4, 9, 4);
ASSERT_EQ(matcher.Solve(), MinCostPerfectMatching::INFEASIBLE);
}
TEST(MinCostPerfectMatchingTest, IntegerOverflow) {
MinCostPerfectMatching matcher(4);
matcher.AddEdgeWithCost(0, 2, std::numeric_limits<int64_t>::max());
matcher.AddEdgeWithCost(0, 3, std::numeric_limits<int64_t>::max());
matcher.AddEdgeWithCost(1, 2, std::numeric_limits<int64_t>::max());
matcher.AddEdgeWithCost(1, 3, std::numeric_limits<int64_t>::max());
ASSERT_EQ(matcher.Solve(), MinCostPerfectMatching::INTEGER_OVERFLOW);
}
TEST(MinCostPerfectMatchingTest, CostOverflow) {
MinCostPerfectMatching matcher(4);
matcher.AddEdgeWithCost(0, 2, std::numeric_limits<int64_t>::max() / 3);
matcher.AddEdgeWithCost(0, 3, std::numeric_limits<int64_t>::max() / 3);
matcher.AddEdgeWithCost(1, 2, std::numeric_limits<int64_t>::max() / 3);
matcher.AddEdgeWithCost(1, 3, std::numeric_limits<int64_t>::max() / 3);
ASSERT_EQ(matcher.Solve(), MinCostPerfectMatching::COST_OVERFLOW);
EXPECT_EQ(matcher.OptimalCost(), std::numeric_limits<int64_t>::max());
}
class MacholWienTest : public ::testing::TestWithParam<int> {};
// The following test computes bi-partite assignments on the instances described
// in Robert E. Machol and Michael Wien, "Errata: A Hard Assignment
// Problem" Operations Research, vol. 25, p. 364, 1977.
// http://www.jstor.org/stable/169842
//
// Such instances are proven difficult for the Hungarian method. Note that since
// this is a bi-partite problem, this doesn't exercise the Shrink()/Expand()
// methods.
TEST_P(MacholWienTest, SolveHardProblem) {
const int n = GetParam();
MinCostPerfectMatching matcher(2 * n);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
matcher.AddEdgeWithCost(i, n + j, /*cost=*/i * j);
}
}
ASSERT_EQ(matcher.Solve(), MinCostPerfectMatching::OPTIMAL);
int64_t cost = 0;
for (int i = 0; i < n; ++i) {
cost += i * (n - 1 - i);
EXPECT_EQ(matcher.Match(i), 2 * n - 1 - i);
}
EXPECT_EQ(matcher.OptimalCost(), cost);
}
// Even with -c opt, a 1000x1000 Machol-Wien problem currently takes too long to
// solve.
#ifdef NDEBUG
INSTANTIATE_TEST_SUITE_P(MacholWienProblems, MacholWienTest,
::testing::Values(10, 50, 100, 200));
#else
INSTANTIATE_TEST_SUITE_P(MacholWienProblems, MacholWienTest,
::testing::Values(10, 50));
#endif
using NodeIndex = BlossomGraph::NodeIndex;
using EdgeIndex = BlossomGraph::EdgeIndex;
using CostValue = BlossomGraph::CostValue;
// Tests on a basic complete graph on 4 nodes.
TEST(BlossomGraphTest, Initialization) {
const int num_nodes = 4;
BlossomGraph graph(num_nodes);
CostValue increasing_cost;
for (NodeIndex a(0); a < num_nodes; ++a) {
for (NodeIndex b(a + 1); b < num_nodes; ++b) {
graph.AddEdge(a, b, ++increasing_cost);
}
}
CHECK(graph.Initialize());
CHECK(graph.DebugDualsAreFeasible());
EXPECT_EQ(graph.Dual(graph.GetNode(0)), CostValue(2));
EXPECT_EQ(graph.Dual(graph.GetNode(1)), CostValue(0));
EXPECT_EQ(graph.Dual(graph.GetNode(2)), CostValue(2));
EXPECT_EQ(graph.Dual(graph.GetNode(3)), CostValue(4));
// We don't have a perfect matching yet. Only 1 pair is matched.
EXPECT_EQ(graph.Match(NodeIndex(0)), NodeIndex(1));
EXPECT_EQ(graph.Match(NodeIndex(1)), NodeIndex(0));
EXPECT_EQ(graph.Slack(graph.GetEdge(0)), CostValue(0)); // edge 0 <-> 1.
EXPECT_FALSE(!graph.NodeIsMatched(NodeIndex(0)));
EXPECT_FALSE(!graph.NodeIsMatched(NodeIndex(1)));
// We have two unmatched nodes, which are tree roots.
EXPECT_EQ(graph.Match(NodeIndex(2)), NodeIndex(2));
EXPECT_EQ(graph.Match(NodeIndex(3)), NodeIndex(3));
EXPECT_TRUE(!graph.NodeIsMatched(NodeIndex(2)));
EXPECT_TRUE(!graph.NodeIsMatched(NodeIndex(3)));
// The edge 2 <-> 3 is not tight.
// Is slack is cost = 6 - dual(2) - dual(3) == 3.
EXPECT_EQ(graph.Slack(graph.GetEdge(5)), CostValue(6));
// There is still some operation we can do, and we can't increase
EXPECT_EQ(graph.ComputeMaxCommonTreeDualDeltaAndResetPrimalEdgeQueue(),
CostValue(0));
graph.PrimalUpdates();
VLOG(2) << graph.DebugString();
const CostValue delta =
graph.ComputeMaxCommonTreeDualDeltaAndResetPrimalEdgeQueue();
EXPECT_EQ(delta, 3);
graph.UpdateAllTrees(delta);
EXPECT_EQ(graph.Dual(graph.GetNode(0)), CostValue(-1));
EXPECT_EQ(graph.Dual(graph.GetNode(1)), CostValue(3));
EXPECT_EQ(graph.Dual(graph.GetNode(2)), CostValue(5));
EXPECT_EQ(graph.Dual(graph.GetNode(3)), CostValue(7));
VLOG(2) << graph.DebugString();
graph.PrimalUpdates();
}
struct Edge {
int node1;
int node2;
int64_t cost;
};
std::vector<Edge> GenerateAndLoadRandomProblem(
int num_nodes, int num_arcs, MinCostPerfectMatching* matcher) {
CHECK_EQ(num_nodes % 2, 0);
absl::BitGen random;
std::uniform_int_distribution<int> random_cost(0, 1000);
std::vector<Edge> all_edges;
// Starts by making sure there is a matching.
std::vector<int> all_nodes;
for (int i = 0; i < num_nodes; ++i) all_nodes.push_back(i);
while (!all_nodes.empty()) {
std::vector<int> edge_nodes;
for (int i = 0; i < 2; ++i) {
const int index =
absl::Uniform(random, 0, static_cast<int>(all_nodes.size() - 1));
edge_nodes.push_back(all_nodes[index]);
all_nodes[index] = all_nodes.back();
all_nodes.pop_back();
}
all_edges.push_back({edge_nodes[0], edge_nodes[1], random_cost(random)});
}
// Now just add random arcs.
for (int i = num_nodes / 2; i < num_arcs; ++i) {
const int node1 = absl::Uniform(random, 0, num_nodes);
const int node2 = absl::Uniform(random, 0, num_nodes);
if (node1 != node2) {
all_edges.push_back({node1, node2, random_cost(random)});
}
}
matcher->Reset(num_nodes);
for (const Edge edge : all_edges) {
matcher->AddEdgeWithCost(edge.node1, edge.node2, edge.cost);
}
return all_edges;
}
// We check that the returned matching is a valid matching with the correct
// costs.
//
// TODO(user): We could theoretically recover the dual and check the optimality
// condition if really needed. This is a bit involved though, and with the MIP
// tests below, we should have a good enough confidence in the code already.
void CheckOptimalSolution(const MinCostPerfectMatching& matcher,
absl::Span<const Edge> edges) {
const std::vector<int>& matches = matcher.Matches();
std::vector<bool> seen(matches.size(), false);
int num_seen = 0;
for (int i = 0; i < matches.size(); ++i) {
const int m = matches[i];
ASSERT_NE(m, i);
ASSERT_GE(m, 0);
ASSERT_LT(m, matches.size());
ASSERT_EQ(matches[m], i);
if (m < i) continue;
ASSERT_FALSE(seen[i]);
ASSERT_FALSE(seen[m]);
seen[i] = true;
seen[m] = true;
num_seen += 2;
}
EXPECT_EQ(num_seen, matches.size());
// Check that the matching returned has the correct cost.
std::vector<int64_t> costs(matches.size(),
std::numeric_limits<int64_t>::max());
for (const Edge e : edges) {
if (matches[e.node1] == e.node2) {
const int rep = std::min(e.node1, e.node2);
const int other = std::max(e.node1, e.node2);
costs[rep] = std::min(costs[rep], e.cost);
costs[other] = 0;
}
}
int64_t actual_cost = 0;
for (int i = 0; i < costs.size(); ++i) {
CHECK_NE(costs[i], std::numeric_limits<int64_t>::max());
actual_cost += costs[i];
}
EXPECT_EQ(matcher.OptimalCost(), actual_cost);
}
TEST(BlossomGraphTest, RandomSmallGraph) {
for (const int size : {10, 40, 100, 1000}) {
for (const int edge_factor : {1, 10, 100}) {
MinCostPerfectMatching matcher;
const std::vector<Edge> edges =
GenerateAndLoadRandomProblem(size, size * edge_factor, &matcher);
ASSERT_EQ(matcher.Solve(), MinCostPerfectMatching::OPTIMAL)
<< "Size: " << size << ", Edge factor: " << edge_factor;
CheckOptimalSolution(matcher, edges);
}
}
}
TEST(BlossomGraphTest, RandomLargeGraph) {
if (DEBUG_MODE) GTEST_SKIP() << "Too slow in non-opt";
MinCostPerfectMatching matcher;
const std::vector<Edge> edges =
GenerateAndLoadRandomProblem(10000, 100000, &matcher);
ASSERT_EQ(matcher.Solve(), MinCostPerfectMatching::OPTIMAL);
CheckOptimalSolution(matcher, edges);
}
int64_t SolveWithMip(absl::Span<const Edge> edges) {
MPModelRequest request;
request.set_solver_type(MPModelRequest::SAT_INTEGER_PROGRAMMING);
std::vector<MPConstraintProto*> exactly_ones;
for (int i = 0; i < edges.size(); ++i) {
auto* var_proto = request.mutable_model()->add_variable();
var_proto->set_lower_bound(0.0);
var_proto->set_upper_bound(1.0);
var_proto->set_is_integer(true);
var_proto->set_objective_coefficient(edges[i].cost);
for (const int node : {edges[i].node1, edges[i].node2}) {
// Create constraint if needed.
while (node >= exactly_ones.size()) {
exactly_ones.push_back(request.mutable_model()->add_constraint());
exactly_ones.back()->set_lower_bound(1.0);
exactly_ones.back()->set_upper_bound(1.0);
}
// Add edge to it.
exactly_ones[node]->add_var_index(i);
exactly_ones[node]->add_coefficient(1.0);
}
}
const MPSolutionResponse response = SolveMPModel(request);
return static_cast<int64_t>(std::round(response.objective_value()));
}
class AgreeWithMipTest : public ::testing::TestWithParam<int> {};
TEST_P(AgreeWithMipTest, CompareOptimalObjective) {
MinCostPerfectMatching matcher;
const std::vector<Edge> edges =
GenerateAndLoadRandomProblem(50, 100, &matcher);
ASSERT_EQ(matcher.Solve(), MinCostPerfectMatching::OPTIMAL);
EXPECT_EQ(matcher.OptimalCost(), SolveWithMip(edges));
}
INSTANTIATE_TEST_SUITE_P(RandomInstances, AgreeWithMipTest,
::testing::Range(0, 10));
} // namespace
} // namespace operations_research