You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Mean Score mean_squared_error on 5 Folds: 76.0092 std: 15.236319
Models_1 Mean mean_squared_error Score Train: 76.0097
Model 2
One iteration takes ~ 10.6 sec
Start Auto calibration parameters
Start optimization with the parameters:
CV_Folds = 5
Score_CV_Folds = 1
Feature_Selection = True
Opt_lvl = 1
Cold_start = 10
Early_stoping = 50
Metric = mean_squared_error
Direction = minimize
##################################################
Default model OptScore = 75.9577
Optimize: : 16it [02:44, 24.17s/it, | Model: MLP | OptScore: 109.1348 | Best mean_squared_error: 109.1348 ]
stack trace is:
/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/utils/extmath.py:153: RuntimeWarning: overflow encountered in matmul
ret = a @ b
/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/utils/extmath.py:153: RuntimeWarning: invalid value encountered in matmul
ret = a @ b
Trial 16 failed because of the following error: ValueError("Input contains NaN, infinity or a value too large for dtype('float64').")
Traceback (most recent call last):
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/optuna/study.py", line 799, in _run_trial
result = func(trial)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/automl_alex/models/base.py", line 420, in objective
**data_kwargs,
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/automl_alex/models/base.py", line 762, in cross_val_score
res = self.cross_val(predict=False,**kwargs)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/automl_alex/models/base.py", line 700, in cross_val
y_test=val_y.reset_index(drop=True),
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/automl_alex/models/sklearn_models.py", line 88, in _fit
model.model.fit(X_train, y_train,)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 641, in fit
return self._fit(X, y, incremental=False)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 371, in _fit
intercept_grads, layer_units, incremental)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 554, in _fit_stochastic
self._update_no_improvement_count(early_stopping, X_val, y_val)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 597, in update_no_improvement_count
self.validation_scores.append(self.score(X_val, y_val))
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/base.py", line 552, in score
return r2_score(y, y_pred, sample_weight=sample_weight)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/utils/validation.py", line 72, in inner_f
return f(**kwargs)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/metrics/_regression.py", line 589, in r2_score
y_true, y_pred, multioutput)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/metrics/_regression.py", line 86, in _check_reg_targets
y_pred = check_array(y_pred, ensure_2d=False, dtype=dtype)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/utils/validation.py", line 72, in inner_f
return f(**kwargs)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/utils/validation.py", line 645, in check_array
allow_nan=force_all_finite == 'allow-nan')
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/utils/validation.py", line 99, in _assert_all_finite
msg_dtype if msg_dtype is not None else X.dtype)
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
I'm trying to use automl_alex to make a baseline for this task, but this triggered an error.
my code is:
Step 1: Model 0
100%|██████████| 1/1 [00:14<00:00, 14.74s/it]
Model 1
One iteration takes ~ 4.5 sec
Predict from Models_1
100%|██████████| 3/3 [01:27<00:00, 29.22s/it]
0%| | 0/1 [00:00<?, ?it/s]
Mean Score mean_squared_error on 5 Folds: 76.0092 std: 15.236319
Models_1 Mean mean_squared_error Score Train: 76.0097
Model 2
One iteration takes ~ 10.6 sec
stack trace is:
/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/utils/extmath.py:153: RuntimeWarning: overflow encountered in matmul
ret = a @ b
/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/utils/extmath.py:153: RuntimeWarning: invalid value encountered in matmul
ret = a @ b
Trial 16 failed because of the following error: ValueError("Input contains NaN, infinity or a value too large for dtype('float64').")
Traceback (most recent call last):
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/optuna/study.py", line 799, in _run_trial
result = func(trial)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/automl_alex/models/base.py", line 420, in objective
**data_kwargs,
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/automl_alex/models/base.py", line 762, in cross_val_score
res = self.cross_val(predict=False,**kwargs)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/automl_alex/models/base.py", line 700, in cross_val
y_test=val_y.reset_index(drop=True),
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/automl_alex/models/sklearn_models.py", line 88, in _fit
model.model.fit(X_train, y_train,)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 641, in fit
return self._fit(X, y, incremental=False)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 371, in _fit
intercept_grads, layer_units, incremental)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 554, in _fit_stochastic
self._update_no_improvement_count(early_stopping, X_val, y_val)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 597, in update_no_improvement_count
self.validation_scores.append(self.score(X_val, y_val))
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/base.py", line 552, in score
return r2_score(y, y_pred, sample_weight=sample_weight)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/utils/validation.py", line 72, in inner_f
return f(**kwargs)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/metrics/_regression.py", line 589, in r2_score
y_true, y_pred, multioutput)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/metrics/_regression.py", line 86, in _check_reg_targets
y_pred = check_array(y_pred, ensure_2d=False, dtype=dtype)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/utils/validation.py", line 72, in inner_f
return f(**kwargs)
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/utils/validation.py", line 645, in check_array
allow_nan=force_all_finite == 'allow-nan')
File "/home/user/Projects/p0/venv/lib/python3.7/site-packages/sklearn/utils/validation.py", line 99, in _assert_all_finite
msg_dtype if msg_dtype is not None else X.dtype)
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
python: 3.7.4
ubuntu: Ubuntu 18.04.5 LTS
packages installed:
alembic==1.4.3 argon2-cffi==20.1.0 async-generator==1.10 attrs==20.2.0 automl-alex==0.10.7 backcall==0.2.0 bleach==3.2.1 catboost==0.24.2 category-encoders==2.2.2 certifi==2020.6.20 cffi==1.14.3 chardet==3.0.4 cliff==3.4.0 cmaes==0.7.0 cmd2==1.3.11 colorama==0.4.4 colorlog==4.4.0 cycler==0.10.0 decorator==4.4.2 defusedxml==0.6.0 entrypoints==0.3 graphviz==0.14.2 idna==2.10 importlib-metadata==2.0.0 ipykernel==5.3.4 ipython==7.19.0 ipython-genutils==0.2.0 jedi==0.17.2 Jinja2==2.11.2 joblib==0.17.0 json5==0.9.5 jsonschema==3.2.0 jupyter-client==6.1.7 jupyter-core==4.6.3 jupyterlab==2.2.9 jupyterlab-pygments==0.1.2 jupyterlab-server==1.2.0 kiwisolver==1.3.1 lightgbm==3.0.0 Mako==1.1.3 MarkupSafe==1.1.1 matplotlib==3.3.2 mistune==0.8.4 nbclient==0.5.1 nbconvert==6.0.7 nbformat==5.0.8 nest-asyncio==1.4.2 notebook==6.1.4 numpy==1.19.4 optuna==2.2.0 packaging==20.4 pandas==1.1.4 pandocfilters==1.4.3 parso==0.7.1 patsy==0.5.1 pbr==5.5.1 pexpect==4.8.0 pickleshare==0.7.5 Pillow==8.0.1 plotly==4.12.0 prettytable==0.7.2 prometheus-client==0.8.0 prompt-toolkit==3.0.8 ptyprocess==0.6.0 pycparser==2.20 Pygments==2.7.2 pyparsing==2.4.7 pyperclip==1.8.1 pyrsistent==0.17.3 python-dateutil==2.8.1 python-editor==1.0.4 pytz==2020.4 PyYAML==5.3.1 pyzmq==19.0.2 requests==2.24.0 retrying==1.3.3 scikit-learn==0.23.2 scipy==1.5.3 seaborn==0.11.0 Send2Trash==1.5.0 six==1.15.0 SQLAlchemy==1.3.20 statsmodels==0.12.1 stevedore==3.2.2 terminado==0.9.1 testpath==0.4.4 threadpoolctl==2.1.0 tornado==6.1 tqdm==4.51.0 traitlets==5.0.5 urllib3==1.25.11 wcwidth==0.2.5 webencodings==0.5.1 xgboost==1.2.1 zipp==3.4.0
The text was updated successfully, but these errors were encountered: