forked from howerj/dbcc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
2c.c
1060 lines (949 loc) · 32.9 KB
/
2c.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**@file 2c.c
* @brief Convert the Abstract Syntax Tree generated by mpc for the DBC file
* into some C code which can encode/decode signals.
* @copyright Richard James Howe (2018)
* @license MIT
*
* @todo A data driven version would be better, data should be centralized
* and the pack/unpack functions should use data structures instead of
* big functions with switch statements.
* @todo Signal status; signal should be set to unknown first, or when there
* is a timeout. A timestamp should also be processed.
* @todo Add (optional) generation of 'asserts' into code, so pointers can
* be asserted to be non-NULL, DLCs within range (0-8), ID within ranges (29-bit),
* and other properties.
*
* This file is quite a mess, but that is not going to change, it is also
* quite short and seems to do the job. A better solution would be to make a
* template tool, or a macro processor, suited for the task of generating C
* code. The entire program really should be written in a language like Perl or
* Python, but I wanted to use the MPC library for something, so here we are. */
#include "2c.h"
#include "util.h"
#include <assert.h>
#include <ctype.h>
#include <inttypes.h>
#include <string.h>
#include <time.h>
#define MAX_NAME_LENGTH (512u)
/* The float packing and unpacking is stolen and modified from
* <https://beej.us/guide/bgnet/examples/pack2b.c>!
* (It's public domain code as far as I know, from Beej's guide to network
* programming).
*
* The following link provides a calculator you can use to see what
* bits correspond to a floating point number:
* <https://www.h-schmidt.net/FloatConverter/IEEE754.html>
*
* Special cases:
*
* Zero and sign bit set -> Negative Zero
*
* All Exponent Bits Set
* - Mantissa is zero and sign bit is zero -> Infinity
* - Mantissa is zero and sign bit is on -> -Infinity
* - Mantissa is non-zero -> NaN */
static char *float_pack = "\
/* pack754() -- pack a floating point number into IEEE-754 format */ \n\
static uint64_t pack754(const double f, const unsigned bits, const unsigned expbits) {\n\
if (f == 0.0) /* get this special case out of the way */\n\
return signbit(f) ? (1uLL << (bits - 1)) : 0;\n\
if (f != f) /* NaN, encoded as Exponent == all-bits-set, Mantissa != 0, Signbit == Do not care */\n\
return (1uLL << (bits - 1)) - 1uLL;\n\
if (f == INFINITY) /* +INFINITY encoded as Mantissa == 0, Exponent == all-bits-set */\n\
return ((1uLL << expbits) - 1uLL) << (bits - expbits - 1);\n\
if (f == -INFINITY) /* -INFINITY encoded as Mantissa == 0, Exponent == all-bits-set, Signbit == 1 */\n\
return (1uLL << (bits - 1)) | ((1uLL << expbits) - 1uLL) << (bits - expbits - 1);\n\
\n\
long long sign = 0;\n\
double fnorm = f;\n\
/* check sign and begin normalization */\n\
if (f < 0) { sign = 1; fnorm = -f; }\n\
\n\
/* get the normalized form of f and track the exponent */\n\
int shift = 0;\n\
while (fnorm >= 2.0) { fnorm /= 2.0; shift++; }\n\
while (fnorm < 1.0) { fnorm *= 2.0; shift--; }\n\
fnorm = fnorm - 1.0;\n\
\n\
const unsigned significandbits = bits - expbits - 1; // -1 for sign bit\n\
\n\
/* calculate the binary form (non-float) of the significand data */\n\
const long long significand = fnorm * (( 1LL << significandbits) + 0.5f);\n\
\n\
/* get the biased exponent */\n\
const long long exp = shift + ((1LL << (expbits - 1)) - 1); // shift + bias\n\
\n\
/* return the final answer */\n\
return (sign << (bits - 1)) | (exp << (bits - expbits - 1)) | significand;\n\
}\n\
\n\
static inline uint32_t pack754_32(const float f) { return pack754(f, 32, 8); }\n\
static inline uint64_t pack754_64(const double f) { return pack754(f, 64, 11); }\n\
\n\n";
static char *float_unpack = "\
/* unpack754() -- unpack a floating point number from IEEE-754 format */ \n\
static double unpack754(const uint64_t i, const unsigned bits, const unsigned expbits) {\n\
if (i == 0) return 0.0;\n\
\n\
const uint64_t expset = ((1uLL << expbits) - 1uLL) << (bits - expbits - 1);\n\
if ((i & expset) == expset) { /* NaN or +/-Infinity */\n\
if (i & ((1uLL << (bits - expbits - 1)) - 1uLL)) /* Non zero Mantissa means NaN */\n\
return NAN;\n\
return i & (1uLL << (bits - 1)) ? -INFINITY : INFINITY;\n\
}\n\
\n\
/* pull the significand */\n\
const unsigned significandbits = bits - expbits - 1; /* - 1 for sign bit */\n\
double result = (i & ((1LL << significandbits) - 1)); /* mask */\n\
result /= (1LL << significandbits); /* convert back to float */\n\
result += 1.0f; /* add the one back on */\n\
\n\
/* deal with the exponent */\n\
const unsigned bias = (1 << (expbits - 1)) - 1;\n\
long long shift = ((i >> significandbits) & ((1LL << expbits) - 1)) - bias;\n\
while (shift > 0) { result *= 2.0; shift--; }\n\
while (shift < 0) { result /= 2.0; shift++; }\n\
\n\
return (i >> (bits - 1)) & 1? -result: result; /* sign it, and return */\n\
}\n\
\n\
static inline float unpack754_32(uint32_t i) { return unpack754(i, 32, 8); }\n\
static inline double unpack754_64(uint64_t i) { return unpack754(i, 64, 11); }\n\
\n\n";
static const bool swap_motorola = true;
static unsigned fix_start_bit(bool motorola, unsigned start, unsigned siglen)
{
if (motorola)
start = (8 * (7 - (start / 8))) + (start % 8) - (siglen - 1);
return start;
}
static const char *determine_unsigned_type(unsigned length)
{
const char *type = "uint64_t";
if (length <= 32)
type = "uint32_t";
if (length <= 16)
type = "uint16_t";
if (length <= 8)
type = "uint8_t";
return type;
}
static const char *determine_signed_type(unsigned length)
{
const char *type = "int64_t";
if (length <= 32)
type = "int32_t";
if (length <= 16)
type = "int16_t";
if (length <= 8)
type = "int8_t";
return type;
}
static const char *determine_type(unsigned length, bool is_signed)
{
return is_signed ?
determine_signed_type(length) :
determine_unsigned_type(length);
}
static int comment(signal_t *sig, FILE *o, const char *indent)
{
assert(sig);
assert(o);
return fprintf(o, "%s/* %s: start-bit %u, length %u, endianess %s, scaling %g, offset %g */\n",
indent,
sig->name,
sig->start_bit,
sig->bit_length,
sig->endianess == endianess_motorola_e ? "motorola" : "intel",
sig->scaling,
sig->offset);
}
static int signal2deserializer(signal_t *sig, const char *msg_name, FILE *o, const char *indent)
{
assert(sig);
assert(msg_name);
assert(o);
const bool motorola = (sig->endianess == endianess_motorola_e);
const unsigned start = fix_start_bit(motorola, sig->start_bit, sig->bit_length);
const unsigned length = sig->bit_length;
const uint64_t mask = length == 64 ?
0xFFFFFFFFFFFFFFFFuLL :
(1uLL << length) - 1uLL;
if (comment(sig, o, indent) < 0)
return -1;
if (start)
fprintf(o, "%sx = (%c >> %d) & 0x%"PRIx64";\n", indent, motorola ? 'm' : 'i', start, mask);
else
fprintf(o, "%sx = %c & 0x%"PRIx64";\n", indent, motorola ? 'm' : 'i', mask);
if (sig->is_floating) {
assert(length == 32 || length == 64);
if (fprintf(o, "%so->%s.%s = unpack754_%d(x);\n", indent, msg_name, sig->name, length) < 0)
return -1;
return 0;
}
if (sig->is_signed) {
const uint64_t top = (1uL << (length - 1));
uint64_t negative = ~mask;
if (length <= 32)
negative &= 0xFFFFFFFF;
if (length <= 16)
negative &= 0xFFFF;
if (length <= 8)
negative &= 0xFF;
if (negative)
fprintf(o, "%sx = x & 0x%"PRIx64" ? x | 0x%"PRIx64" : x; \n", indent, top, negative);
}
fprintf(o, "%so->%s.%s = x;\n", indent, msg_name, sig->name);
return 0;
}
static int signal2serializer(signal_t *sig, const char *msg_name, FILE *o, const char *indent)
{
assert(sig);
assert(o);
bool motorola = (sig->endianess == endianess_motorola_e);
int start = fix_start_bit(motorola, sig->start_bit, sig->bit_length);
uint64_t mask = sig->bit_length == 64 ?
0xFFFFFFFFFFFFFFFFuLL :
(1uLL << sig->bit_length) - 1uLL;
if (comment(sig, o, indent) < 0)
return -1;
if (sig->is_floating) {
assert(sig->bit_length == 32 || sig->bit_length == 64);
fprintf(o, "%sx = pack754_%u(o->%s.%s) & 0x%"PRIx64";\n", indent, sig->bit_length, msg_name, sig->name, mask);
} else {
fprintf(o, "%sx = ((%s)(o->%s.%s)) & 0x%"PRIx64";\n", indent, determine_unsigned_type(sig->bit_length), msg_name, sig->name, mask);
}
if (start)
fprintf(o, "%sx <<= %u; \n", indent, start);
fprintf(o, "%s%c |= x;\n", indent, motorola ? 'm' : 'i');
return 0;
}
static int signal2print(signal_t *sig, unsigned id, const char *msg_name, FILE *o)
{
/*super lazy*/
if (sig->is_floating)
return fprintf(o, "\tr = print_helper(r, fprintf(output, \"%s = (wire: %%g)\\n\", (double)(o->%s.%s)));\n", sig->name, msg_name, sig->name);
return fprintf(o, "\tr = print_helper(r, fprintf(output, \"%s = (wire: %%.0f)\\n\", (double)(o->%s.%s)));\n", sig->name, msg_name, sig->name);
/* ======= NEVER REACHED ======== */
/* @todo TODO Fix this, it should print out the encoded values as well */
fprintf(o, "\tscaled = decode_can_0x%03x_%s(print);\n", id, sig->name);
if (sig->is_floating)
return fprintf(o, "\tr = fprintf(data, \"%s = %%.3f (wire: %%g)\\n\", scaled, (double)(print->%s));\n",
sig->name, sig->name);
return fprintf(o, "\tr = fprintf(data, \"%s = %%.3f (wire: %%.0f)\\n\", scaled, (double)(print->%s));\n",
sig->name, sig->name);
/*fprintf(o, "\tif (r < 0)\n\t\treturn r;");*/
}
static int signal2type(signal_t *sig, FILE *o)
{
assert(sig);
assert(o);
const unsigned length = sig->bit_length;
const char *type = determine_type(length, sig->is_signed);
if (length == 0) {
warning("signal %s has bit length of 0 (fix the dbc file)");
return -1;
}
if (sig->is_floating) {
if (length != 32 && length != 64) {
warning("signal %s is floating point number but has length %u (fix the dbc file)", sig->name, length);
return -1;
}
type = length == 64 ? "double" : "float";
}
if (sig->comment) {
fprintf(o, "\t/* %s: %s */\n", sig->name, sig->comment);
return fprintf(o, "\t/* scaling %.1f, offset %.1f, units %s %s */\n\t%s %s;\n",
sig->scaling, sig->offset, sig->units[0] ? sig->units : "none",
sig->is_floating ? ", floating" : "",
type, sig->name);
} else {
return fprintf(o, "\t%s %s; /* scaling %.1f, offset %.1f, units %s %s */\n",
type, sig->name, sig->scaling, sig->offset, sig->units[0] ? sig->units : "none",
sig->is_floating ? ", floating" : "");
}
}
static bool signal_are_min_max_valid(signal_t *sig)
{
assert(sig);
return sig->minimum != sig->maximum;
}
static uint64_t unsigned_max(signal_t *sig)
{
assert(sig);
if (sig->bit_length == 64)
return UINT64_MAX;
return (1uLL << (sig->bit_length)) - 1uLL;
}
static int64_t signed_max(signal_t *sig)
{
assert(sig);
if (sig->bit_length == 64)
return INT64_MAX;
return ((1uLL << (sig->bit_length - 1)) - 1uLL);
}
static int64_t signed_min(signal_t *sig)
{
assert(sig);
if (sig->bit_length == 64)
return INT64_MIN;
return ~signed_max(sig);
}
static int signal2scaling_encode(const char *msgname, unsigned id, signal_t *sig, FILE *o, bool header, const char *god, dbc2c_options_t *copts)
{
assert(msgname);
assert(sig);
assert(o);
assert(copts);
const char *type = determine_type(sig->bit_length, sig->is_signed);
if (sig->scaling != 1.0 || sig->offset != 0.0)
type = "double";
fprintf(o, "int encode_can_0x%03x_%s(can_obj_%s_t *o, %s in)", id, sig->name, god, copts->use_doubles_for_encoding ? "double" : type);
if (header)
return fputs(";\n", o);
fputs(" {\n", o);
if (copts->generate_asserts) {
fputs("\tassert(o);\n", o);
}
if (signal_are_min_max_valid(sig)) {
bool gmax = true;
bool gmin = true;
if (sig->is_signed) {
gmin = sig->minimum > signed_min(sig);
gmax = sig->maximum < signed_max(sig);
} else {
gmin = sig->minimum > 0.0;
gmax = sig->maximum < unsigned_max(sig);
}
if (sig->is_floating) {
gmax = true;
gmax = true;
}
if (gmin || gmax)
fprintf(o, "\to->%s.%s = 0;\n", msgname, sig->name); // cast!
if (gmin)
fprintf(o, "\tif (in < %g)\n\t\treturn -1;\n", sig->minimum);
if (gmax)
fprintf(o, "\tif (in > %g)\n\t\treturn -1;\n", sig->maximum);
}
if (sig->scaling == 0.0)
error("invalid scaling factor (fix your DBC file)");
if (sig->offset != 0.0)
fprintf(o, "\tin += %g;\n", -1.0 * sig->offset);
if (sig->scaling != 1.0)
fprintf(o, "\tin *= %g;\n", 1.0 / sig->scaling);
fprintf(o, "\to->%s.%s = in;\n", msgname, sig->name); // cast!
return fputs("\treturn 0;\n}\n\n", o);
}
static int signal2scaling_decode(const char *msgname, unsigned id, signal_t *sig, FILE *o, bool header, const char *god, dbc2c_options_t *copts)
{
assert(msgname);
assert(sig);
assert(o);
assert(copts);
const char *type = determine_type(sig->bit_length, sig->is_signed);
if (sig->scaling != 1.0 || sig->offset != 0.0)
type = "double";
fprintf(o, "int decode_can_0x%03x_%s(const can_obj_%s_t *o, %s *out)", id, sig->name, god, copts->use_doubles_for_encoding ? "double" : type);
if (header)
return fputs(";\n", o);
fputs(" {\n", o);
if (copts->generate_asserts) {
fputs("\tassert(o);\n", o);
fputs("\tassert(out);\n", o);
}
fprintf(o, "\t%s rval = (%s)(o->%s.%s);\n", type, type, msgname, sig->name);
if (sig->scaling == 0.0)
error("invalid scaling factor (fix your DBC file)");
if (sig->scaling != 1.0)
fprintf(o, "\trval *= %g;\n", sig->scaling);
if (sig->offset != 0.0)
fprintf(o, "\trval += %g;\n", sig->offset);
if (signal_are_min_max_valid(sig)) {
bool gmax = true;
bool gmin = true;
if (sig->is_signed) { /**@warning comparison may fail because of limits of double size */
gmin = sig->minimum > signed_min(sig);
gmax = sig->maximum < signed_max(sig);
} else {
gmin = sig->minimum > 0.0;
gmax = sig->maximum < unsigned_max(sig);
}
if (sig->is_floating) {
gmax = true;
gmax = true;
}
if (!gmax && !gmin) {
fputs("\t*out = rval;\n", o);
fputs("\treturn 0;\n", o);
} else {
if (gmin && gmax) {
fprintf(o, "\tif ((rval >= %g) && (rval <= %g)) {\n", sig->minimum, sig->maximum);
} else if (gmax) {
fprintf(o, "\tif (rval <= %g) {\n", sig->maximum);
} else if (gmin) {
fprintf(o, "\tif (rval >= %g) {\n", sig->minimum);
}
fputs("\t\t*out = rval;\n", o);
fputs("\t\treturn 0;\n", o);
fputs("\t} else {\n", o);
fprintf(o, "\t\t*out = (%s)0;\n", type);
fputs("\t\treturn -1;\n", o);
fputs("\t}\n", o);
}
} else {
fputs("\t*out = rval;\n", o);
fputs("\treturn 0;\n", o);
}
return fputs("}\n\n", o);
}
static int signal2scaling(const char *msgname, unsigned id, signal_t *sig, FILE *o, bool decode, bool header, const char *god, dbc2c_options_t *copts)
{
assert(copts);
if (decode)
return signal2scaling_decode(msgname, id, sig, o, header, god, copts);
return signal2scaling_encode(msgname, id, sig, o, header, god, copts);
}
static int print_function_name(FILE *out, const char *prefix, const char *name, const char *postfix, bool in, char *datatype, bool dlc, const char *god)
{
assert(out);
assert(prefix);
assert(name);
assert(god);
assert(postfix);
return fprintf(out, "static int %s_%s(can_obj_%s_t *o, %s %sdata%s)%s",
prefix, name, god, datatype,
in ? "" : "*",
dlc ? ", uint8_t dlc, dbcc_time_stamp_t time_stamp" : "",
postfix);
}
static void make_name(char *newname, size_t maxlen, const char *name, unsigned id)
{
assert(newname);
assert(name);
snprintf(newname, maxlen-1, "can_0x%03x_%s", id, name);
}
static signal_t *find_multiplexor(can_msg_t *msg) {
assert(msg);
signal_t *multiplexor = NULL;
for (size_t i = 0; i < msg->signal_count; i++) {
signal_t *sig = msg->sigs[i];
if (sig->is_multiplexor) {
if (multiplexor)
error("multiple multiplexor values detected (only one per CAN msg is allowed) for %s", msg->name);
multiplexor = sig;
}
if (sig->is_multiplexed)
continue;
}
return multiplexor;
}
static signal_t *process_signals_and_find_multiplexer(can_msg_t *msg, FILE *c, const char *name, bool serialize)
{
assert(msg);
assert(c);
assert(name);
signal_t *multiplexor = NULL;
for (size_t i = 0; i < msg->signal_count; i++) {
signal_t *sig = msg->sigs[i];
if (sig->is_multiplexor) {
if (multiplexor)
error("multiple multiplexor values detected (only one per CAN msg is allowed) for %s", name);
multiplexor = sig;
}
if (sig->is_multiplexed)
continue;
if ((serialize ? signal2serializer(sig, name, c, "\t") : signal2deserializer(sig, name, c, "\t")) < 0)
error("%s failed", serialize ? "serialization" : "deserialization");
}
return multiplexor;
}
static int cmp_signal(const void *lhs, const void *rhs)
{
assert(lhs);
assert(rhs);
int ret = 0;
if ((*(signal_t**)lhs)->switchval < ((*(signal_t**)rhs)->switchval))
ret = -1;
else if ((*(signal_t**)lhs)->switchval > (*(signal_t**)rhs)->switchval)
ret = 1;
return ret;
}
static int multiplexor_switch(can_msg_t *msg, signal_t *multiplexor, FILE *c, const char *msg_name, bool serialize)
{
assert(msg);
assert(multiplexor);
assert(c);
fprintf(c, "\tswitch (o->%s.%s) {\n", msg_name, multiplexor->name);
qsort(msg->sigs, msg->signal_count, sizeof(*msg->sigs), cmp_signal);
for (size_t i = 0; i < msg->signal_count; i++) {
signal_t *sig = msg->sigs[i];
if (!(sig->is_multiplexed))
continue;
fprintf(c, "\tcase %u:\n", sig->switchval);
size_t j = i;
for (; j < msg->signal_count && msg->sigs[i]->switchval == msg->sigs[j]->switchval; j++) {
assert(j < msg->signal_count);
signal_t* sig = msg->sigs[j];
if ((serialize ? signal2serializer(sig, msg_name, c, "\t\t") : signal2deserializer(sig, msg_name, c, "\t\t")) < 0)
return -1;
}
i = j - 1;
assert(i < msg->signal_count);
fprintf(c, "\t\tbreak;\n");
}
fprintf(c, "\tdefault:\n\t\treturn -1;\n\t}\n");
return 0;
}
static int msg_data_type(FILE *c, can_msg_t *msg, bool data)
{
assert(c);
assert(msg);
char name[MAX_NAME_LENGTH] = {0};
make_name(name, MAX_NAME_LENGTH, msg->name, msg->id);
return fprintf(c, "\t%s_t %s%s;\n", name, name, data ? "_data" : "");
}
static int msg_data_type_bitfields(FILE *c, can_msg_t *msg) {
assert(c);
assert(msg);
char name[MAX_NAME_LENGTH] = {0};
make_name(name, MAX_NAME_LENGTH, msg->name, msg->id);
fprintf(c, "\tunsigned %s_status : 2;\n", name); /* uninitialized, present, faulty (range/crc/timeout/other) */
fprintf(c, "\tunsigned %s_tx : 1;\n", name); /* have we packed this message? */
return fprintf(c, "\tunsigned %s_rx : 1;\n", name); /* have we unpacked this message? */
}
static int msg_data_type_time_stamp(FILE *c, can_msg_t *msg) {
assert(c);
assert(msg);
char name[MAX_NAME_LENGTH] = {0};
make_name(name, MAX_NAME_LENGTH, msg->name, msg->id);
return fprintf(c, "\tdbcc_time_stamp_t %s_time_stamp_rx;\n", name);
}
static int msg_pack(can_msg_t *msg, FILE *c, const char *name, bool motorola_used, bool intel_used, const char *god, dbc2c_options_t *copts)
{
assert(msg);
assert(c);
assert(name);
assert(copts);
const bool message_has_signals = motorola_used || intel_used;
print_function_name(c, "pack", name, " {\n", false, "uint64_t", false, god);
if (copts->generate_asserts) {
fprintf(c, "\tassert(o);\n");
fprintf(c, "\tassert(data);\n");
}
if (message_has_signals)
fprintf(c, "\tregister uint64_t x;\n");
if (motorola_used)
fprintf(c, "\tregister uint64_t m = 0;\n");
if (intel_used)
fprintf(c, "\tregister uint64_t i = 0;\n");
if (!message_has_signals)
fprintf(c, "\tUNUSED(o);\n\tUNUSED(data);\n");
signal_t *multiplexor = process_signals_and_find_multiplexer(msg, c, name, true);
if (multiplexor)
if (multiplexor_switch(msg, multiplexor, c, name, true) < 0)
return -1;
if (message_has_signals) {
fprintf(c, "\t*data = %s%s%s%s%s;\n",
swap_motorola && motorola_used ? "reverse_byte_order" : "",
motorola_used ? "(m)" : "",
motorola_used && intel_used ? "|" : "",
(!swap_motorola && intel_used) ? "reverse_byte_order" : "",
intel_used ? "(i)" : "");
}
fprintf(c, "\to->%s_tx = 1;\n", name);
fprintf(c, "\treturn 0;\n}\n\n");
return 0;
}
static int msg_unpack(can_msg_t *msg, FILE *c, const char *name, bool motorola_used, bool intel_used, const char *god, dbc2c_options_t *copts)
{
assert(msg);
assert(c);
assert(name);
assert(copts);
const bool message_has_signals = motorola_used || intel_used;
print_function_name(c, "unpack", name, " {\n", true, "uint64_t", true, god);
if (copts->generate_asserts) {
fprintf(c, "\tassert(o);\n");
fprintf(c, "\tassert(dlc <= 8);\n");
}
if (message_has_signals)
fprintf(c, "\tregister uint64_t x;\n");
if (motorola_used)
fprintf(c, "\tregister uint64_t m = %s(data);\n", swap_motorola ? "reverse_byte_order" : "");
if (intel_used)
fprintf(c, "\tregister uint64_t i = %s(data);\n", swap_motorola ? "" : "reverse_byte_order");
if (!message_has_signals)
fprintf(c, "\tUNUSED(o);\n\tUNUSED(data);\n");
if (msg->dlc)
fprintf(c, "\tif (dlc < %u)\n\t\treturn -1;\n", msg->dlc);
else
fprintf(c, "\tUNUSED(dlc);\n");
signal_t *multiplexor = process_signals_and_find_multiplexer(msg, c, name, false);
if (multiplexor)
if (multiplexor_switch(msg, multiplexor, c, name, false) < 0)
return -1;
fprintf(c, "\to->%s_rx = 1;\n", name);
fprintf(c, "\to->%s_time_stamp_rx = time_stamp;\n", name);
fprintf(c, "\treturn 0;\n}\n\n");
return 0;
}
static int msg_print(can_msg_t *msg, FILE *c, const char *name, const char *god, dbc2c_options_t *copts)
{
assert(msg);
assert(c);
assert(name);
assert(god);
assert(copts);
fprintf(c, "int print_%s(const can_obj_%s_t *o, FILE *output) {\n", name, god);
if (copts->generate_asserts) {
fputs("\tassert(o);\n", c);
fputs("\tassert(output);\n", c);
/* you may note the UNUSED macro may be generated, we should
* still assert we are passed the correct things */
}
if (msg->signal_count)
fprintf(c, "\tint r = 0;\n"); //fprintf(c, "\tdouble scaled;\n\tint r = 0;\n");
else
fprintf(c, "\tUNUSED(o);\n\tUNUSED(output);\n");
for (size_t i = 0; i < msg->signal_count; i++) {
if (signal2print(msg->sigs[i], msg->id, name, c) < 0)
return -1;
}
if (msg->signal_count)
fprintf(c, "\treturn r;\n}\n\n");
else
fprintf(c, "\treturn 0;\n}\n\n");
return 0;
}
static int msg_dlc_check(can_msg_t *msg) {
assert(msg);
const unsigned bits = msg->dlc * 8;
unsigned used = 0;
if (find_multiplexor(msg)) // skip multiplexed messages for now
return 0;
for (size_t i = 0; i < msg->signal_count; i++) {
signal_t *s = msg->sigs[i];
used += s->bit_length;
}
if (used > bits) {
warning("Too many signals, not enough bytes (DLC is too low, fix your DBC file): %s", msg->name);
return -1;
}
return 0;
}
static int msg2c(can_msg_t *msg, FILE *c, dbc2c_options_t *copts, char *god)
{
assert(msg);
assert(c);
assert(copts);
assert(god);
char name[MAX_NAME_LENGTH] = {0};
make_name(name, MAX_NAME_LENGTH, msg->name, msg->id);
bool motorola_used = false;
bool intel_used = false;
for (size_t i = 0; i < msg->signal_count; i++)
if (msg->sigs[i]->endianess == endianess_motorola_e)
motorola_used = true;
else
intel_used = true;
/* sanity checks against messages should go here, we could check for;
* - odd min/max values given scaling
* - duplicate signals and messages
* They really should go into a semantic analysis phase after reading
* in the DBC file and parsing it. Oh Well. */
msg_dlc_check(msg);
if (copts->generate_pack && msg_pack(msg, c, name, motorola_used, intel_used, god, copts) < 0)
return -1;
if (copts->generate_unpack && msg_unpack(msg, c, name, motorola_used, intel_used, god, copts) < 0)
return -1;
for (size_t i = 0; i < msg->signal_count; i++) {
if (copts->generate_unpack)
if (signal2scaling(name, msg->id, msg->sigs[i], c, true, false, god, copts) < 0)
return -1;
if (copts->generate_pack)
if (signal2scaling(name, msg->id, msg->sigs[i], c, false, false, god, copts) < 0)
return -1;
}
if (copts->generate_print && msg_print(msg, c, name, god, copts) < 0)
return -1;
return 0;
}
static int msg2h(can_msg_t *msg, FILE *h, dbc2c_options_t *copts, const char *god)
{
assert(msg);
assert(h);
assert(copts);
assert(god);
char name[MAX_NAME_LENGTH] = {0};
make_name(name, MAX_NAME_LENGTH, msg->name, msg->id);
for (size_t i = 0; i < msg->signal_count; i++) {
if (copts->generate_unpack)
if (signal2scaling(name, msg->id, msg->sigs[i], h, true, true, god, copts) < 0)
return -1;
if (copts->generate_pack)
if (signal2scaling(name, msg->id, msg->sigs[i], h, false, true, god, copts) < 0)
return -1;
}
fputs("\n\n", h);
return 0;
}
static const char *cfunctions =
"static inline uint64_t reverse_byte_order(uint64_t x) {\n"
"\tx = (x & 0x00000000FFFFFFFF) << 32 | (x & 0xFFFFFFFF00000000) >> 32;\n"
"\tx = (x & 0x0000FFFF0000FFFF) << 16 | (x & 0xFFFF0000FFFF0000) >> 16;\n"
"\tx = (x & 0x00FF00FF00FF00FF) << 8 | (x & 0xFF00FF00FF00FF00) >> 8;\n"
"\treturn x;\n"
"}\n\n";
static const char *cfunctions_print_only =
"static inline int print_helper(int r, int print_return_value) {\n"
"\treturn ((r >= 0) && (print_return_value >= 0)) ? r + print_return_value : -1;\n"
"}\n\n";
static int message_compare_function(const void *a, const void *b)
{
assert(a);
assert(b);
can_msg_t *ap = *((can_msg_t**)a);
can_msg_t *bp = *((can_msg_t**)b);
if (ap->id < bp->id) return -1;
if (ap->id == bp->id) return 0;
if (ap->id > bp->id) return 1;
return 0;
}
static int signal_compare_function(const void *a, const void *b)
{
assert(a);
assert(b);
signal_t *ap = *((signal_t**)a);
signal_t *bp = *((signal_t**)b);
if (ap->bit_length < bp->bit_length) return 1;
if (ap->bit_length == bp->bit_length) return 0;
if (ap->bit_length > bp->bit_length) return -1;
return 0;
}
/**@todo add 'const' to print and pack switch functions
* @todo set tx/rx, timestamp and status fields
* @todo pack should return a DLC */
static int switch_function(FILE *c, dbc_t *dbc, char *function, bool unpack,
bool prototype, const char *datatype, bool dlc, const char *god, const dbc2c_options_t *copts)
{
assert(c);
assert(dbc);
assert(function);
assert(god);
assert(copts);
fprintf(c, "int %s_message(can_obj_%s_t *o, const unsigned long id, %s %sdata%s)",
function, god, datatype, unpack ? "" : "*",
dlc ? ", uint8_t dlc, dbcc_time_stamp_t time_stamp" : "");
if (prototype)
return fprintf(c, ";\n");
fprintf(c, " {\n");
if (copts->generate_asserts) {
fprintf(c, "\tassert(o);\n");
fprintf(c, "\tassert(id < (1ul << 29)); /* 29-bit CAN ID is largest possible */\n");
if (dlc)
fprintf(c, "\tassert(dlc <= 8); /* Maximum of 8 bytes in a CAN packet */\n");
}
fprintf(c, "\tswitch (id) {\n");
for (size_t i = 0; i < dbc->message_count; i++) {
can_msg_t *msg = dbc->messages[i];
char name[MAX_NAME_LENGTH] = {0};
make_name(name, MAX_NAME_LENGTH, msg->name, msg->id);
fprintf(c, "\tcase 0x%03lx: return %s_%s(o, data%s);\n",
msg->id,
function,
name,
dlc ? ", dlc, time_stamp" : "");
}
fprintf(c, "\tdefault: break; \n\t}\n");
return fprintf(c, "\treturn -1; \n}\n\n");
}
static int switch_function_print(FILE *c, dbc_t *dbc, bool prototype, const char *god, dbc2c_options_t *copts)
{
assert(c);
assert(dbc);
assert(god);
assert(copts);
fprintf(c, "int print_message(const can_obj_%s_t *o, const unsigned long id, FILE *output)", god);
if (prototype)
return fprintf(c, ";\n");
fprintf(c, " {\n");
if (copts->generate_asserts) {
fprintf(c, "\tassert(o);\n");
fprintf(c, "\tassert(id < (1ul << 29)); /* 29-bit CAN ID is largest possible */\n");
fprintf(c, "\tassert(output);\n");
}
fprintf(c, "\tswitch (id) {\n");
for (size_t i = 0; i < dbc->message_count; i++) {
can_msg_t *msg = dbc->messages[i];
char name[MAX_NAME_LENGTH] = {0};
make_name(name, MAX_NAME_LENGTH, msg->name, msg->id);
fprintf(c, "\tcase 0x%03lx: return print_%s(o, output);\n", msg->id, name);
}
fprintf(c, "\tdefault: break; \n\t}\n");
return fprintf(c, "\treturn -1; \n}\n\n");
}
static int msg2h_types(dbc_t *dbc, FILE *h)
{
assert(h);
assert(dbc);
/**@todo add time stamp information of when the message arrived to struct */
for (size_t i = 0; i < dbc->message_count; i++) {
can_msg_t *msg = dbc->messages[i];
char name[MAX_NAME_LENGTH] = {0};
make_name(name, MAX_NAME_LENGTH, msg->name, msg->id);
if (msg->comment)
fprintf(h, "/* %s */\n", msg->comment);
fprintf(h, "typedef PREPACK struct {\n" );
for (size_t i = 0; i < msg->signal_count; i++)
if (signal2type(msg->sigs[i], h) < 0)
return -1;
fprintf(h, "} POSTPACK %s_t;\n\n", name);
}
return 0;
}
static char *msg2h_god_object(dbc_t *dbc, FILE *h, const char *name)
{
assert(h);
assert(dbc);
char *object_name = duplicate(name);
const size_t object_name_len = strlen(object_name);
for (size_t i = 0; i < object_name_len; i++)
object_name[i] = (isalnum(object_name[i])) ? tolower(object_name[i]) : '_';
fprintf(h, "typedef PREPACK struct {\n");
for (size_t i = 0; i < dbc->message_count; i++)
if (msg_data_type_time_stamp(h, dbc->messages[i]) < 0)
goto fail;
for (size_t i = 0; i < dbc->message_count; i++)
if (msg_data_type_bitfields(h, dbc->messages[i]) < 0)
goto fail;
for (size_t i = 0; i < dbc->message_count; i++)
if (msg_data_type(h, dbc->messages[i], false) < 0)
goto fail;
fprintf(h, "} POSTPACK can_obj_%s_t;\n\n", object_name);
return object_name;
fail:
free(object_name);
return NULL;
}
int dbc2c(dbc_t *dbc, FILE *c, FILE *h, const char *name, dbc2c_options_t *copts)
{
/**@todo print out ECU node information */
assert(dbc);
assert(c);
assert(h);
assert(name);
assert(copts);
int rv = 0;
time_t rawtime = time(NULL);
struct tm *timeinfo = localtime(&rawtime); // This is not considered safe on Visual Studio
char *god = NULL;
char *file_guard = duplicate(name);
const size_t file_guard_len = strlen(file_guard);
/* make file guard all upper case alphanumeric only, first character
* alpha only*/
if (!isalpha(file_guard[0]))
file_guard[0] = '_';
for (size_t i = 0; i < file_guard_len; i++)
file_guard[i] = (isalnum(file_guard[i])) ? toupper(file_guard[i]) : '_';
/* sort signals by id */
qsort(dbc->messages, dbc->message_count, sizeof(dbc->messages[0]), message_compare_function);
/* sort by size for better struct packing */
for (size_t i = 0; i < dbc->message_count; i++) {
can_msg_t *msg = dbc->messages[i];
qsort(msg->sigs, msg->signal_count, sizeof(msg->sigs[0]), signal_compare_function);
}
/* header file (begin) */
fprintf(h, "/** CAN message encoder/decoder: automatically generated - do not edit\n");
if (copts->use_time_stamps)
fprintf(h, " * @note Generated on %s", asctime(timeinfo));
fprintf(h,
" * Generated by dbcc: See https://github.com/howerj/dbcc */\n"
"#ifndef %s\n"
"#define %s\n\n"
"#include <stdint.h>\n"
"%s\n\n"
"#ifdef __cplusplus\n"
"extern \"C\" { \n"
"#endif\n\n",
file_guard,
file_guard,
copts->generate_print ? "#include <stdio.h>" : "");
fprintf(h, "#ifndef PREPACK\n");
fprintf(h, "#define PREPACK\n");
fprintf(h, "#endif\n\n");
fprintf(h, "#ifndef POSTPACK\n");
fprintf(h, "#define POSTPACK\n");
fprintf(h, "#endif\n\n");
fprintf(h, "#ifndef DBCC_TIME_STAMP\n");
fprintf(h, "#define DBCC_TIME_STAMP\n");
fprintf(h, "typedef uint32_t dbcc_time_stamp_t; /* Time stamp for message; you decide on units */\n");
fprintf(h, "#endif\n\n");
fprintf(h, "#ifndef DBCC_STATUS_ENUM\n");
fprintf(h, "#define DBCC_STATUS_ENUM\n");
fprintf(h, "typedef enum {\n");
fprintf(h, "\tDBCC_SIG_STAT_UNINITIALIZED_E = 0, /* Message never sent/received */\n");
fprintf(h, "\tDBCC_SIG_STAT_OK_E = 1, /* Message ok */\n");
fprintf(h, "\tDBCC_SIG_STAT_ERROR_E = 2, /* Encode/Decode/Timestamp/Any error */\n");
fprintf(h, "} dbcc_signal_status_e;\n");
fprintf(h, "#endif\n\n");
if (msg2h_types(dbc, h) < 0) {
rv = -1;
goto fail;
}
god = msg2h_god_object(dbc, h, name);
if (!god) {
rv = -1;
goto fail;
}
if (copts->generate_unpack)
switch_function(h, dbc, "unpack", true, true, "uint64_t", true, god, copts);