-
Notifications
You must be signed in to change notification settings - Fork 25
/
main_TrainValTest.py
426 lines (367 loc) · 18.8 KB
/
main_TrainValTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
"""
Copyright (C) 2022 King Saud University, Saudi Arabia
SPDX-License-Identifier: Apache-2.0
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Author: Hamdi Altaheri
"""
#%%
import os
import sys
import shutil
import time
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.losses import CategoricalCrossentropy
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau
from sklearn.metrics import confusion_matrix, accuracy_score, ConfusionMatrixDisplay
from sklearn.metrics import cohen_kappa_score
from sklearn.model_selection import train_test_split
import models
from preprocess import get_data
# from keras.utils.vis_utils import plot_model
#%%
def draw_learning_curves(history, sub):
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy - subject: ' + str(sub))
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'val'], loc='upper left')
plt.show()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss - subject: ' + str(sub))
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'val'], loc='upper left')
plt.show()
plt.close()
def draw_confusion_matrix(cf_matrix, sub, results_path, classes_labels):
# Generate confusion matrix plot
display_labels = classes_labels
disp = ConfusionMatrixDisplay(confusion_matrix=cf_matrix,
display_labels=display_labels)
disp.plot()
disp.ax_.set_xticklabels(display_labels, rotation=12)
plt.title('Confusion Matrix of Subject: ' + sub )
plt.savefig(results_path + '/subject_' + sub + '.png')
plt.show()
def draw_performance_barChart(num_sub, metric, label):
fig, ax = plt.subplots()
x = list(range(1, num_sub+1))
ax.bar(x, metric, 0.5, label=label)
ax.set_ylabel(label)
ax.set_xlabel("Subject")
ax.set_xticks(x)
ax.set_title('Model '+ label + ' per subject')
ax.set_ylim([0,1])
#%% Training
def train(dataset_conf, train_conf, results_path):
# remove the 'result' folder before training
if os.path.exists(results_path):
# Remove the folder and its contents
shutil.rmtree(results_path)
os.makedirs(results_path)
# Get the current 'IN' time to calculate the overall training time
in_exp = time.time()
# Create a file to store the path of the best model among several runs
best_models = open(results_path + "/best models.txt", "w")
# Create a file to store performance during training
log_write = open(results_path + "/log.txt", "w")
# Get dataset paramters
dataset = dataset_conf.get('name')
n_sub = dataset_conf.get('n_sub')
data_path = dataset_conf.get('data_path')
isStandard = dataset_conf.get('isStandard')
LOSO = dataset_conf.get('LOSO')
# Get training hyperparamters
batch_size = train_conf.get('batch_size')
epochs = train_conf.get('epochs')
patience = train_conf.get('patience')
lr = train_conf.get('lr')
LearnCurves = train_conf.get('LearnCurves') # Plot Learning Curves?
n_train = train_conf.get('n_train')
model_name = train_conf.get('model')
from_logits = train_conf.get('from_logits')
# Initialize variables
acc = np.zeros((n_sub, n_train))
kappa = np.zeros((n_sub, n_train))
# Iteration over subjects
# for sub in range(n_sub-1, n_sub): # (num_sub): for all subjects, (i-1,i): for the ith subject.
for sub in range(n_sub): # (num_sub): for all subjects, (i-1,i): for the ith subject.
print('\nTraining on subject ', sub+1)
log_write.write( '\nTraining on subject '+ str(sub+1) +'\n')
# Initiating variables to save the best subject accuracy among multiple runs.
BestSubjAcc = 0
bestTrainingHistory = []
# Get training and test data
X_train, _, y_train_onehot, _, _, _ = get_data(
data_path, sub, dataset, LOSO = LOSO, isStandard = isStandard)
# Divide the training data into training and validation
X_train, X_val, y_train_onehot, y_val_onehot = train_test_split(X_train, y_train_onehot, test_size=0.2, random_state=42)
# Iteration over multiple runs
for train in range(n_train): # How many repetitions of training for subject i.
# Set the random seed for TensorFlow and NumPy random number generator.
# The purpose of setting a seed is to ensure reproducibility in random operations.
tf.random.set_seed(train+1)
np.random.seed(train+1)
# Get the current 'IN' time to calculate the 'run' training time
in_run = time.time()
# Create folders and files to save trained models for all runs
filepath = results_path + '/saved models/run-{}'.format(train+1)
if not os.path.exists(filepath):
os.makedirs(filepath)
filepath = filepath + '/subject-{}.h5'.format(sub+1)
# Create the model
model = getModel(model_name, dataset_conf, from_logits)
# Compile and train the model
model.compile(loss=CategoricalCrossentropy(from_logits=from_logits), optimizer=Adam(learning_rate=lr), metrics=['accuracy'])
# model.summary()
# plot_model(model, to_file='plot_model.png', show_shapes=True, show_layer_names=True)
callbacks = [
ModelCheckpoint(filepath, monitor='val_loss', verbose=0,
save_best_only=True, save_weights_only=True, mode='min'),
ReduceLROnPlateau(monitor="val_loss", factor=0.90, patience=20, verbose=0, min_lr=0.0001),
# EarlyStopping(monitor='val_loss', verbose=1, mode='min', patience=patience)
]
history = model.fit(X_train, y_train_onehot, validation_data=(X_val, y_val_onehot),
epochs=epochs, batch_size=batch_size, callbacks=callbacks, verbose=0)
# Evaluate the performance of the trained model based on the validation data
# Here we load the Trained weights from the file saved in the hard
# disk, which should be the same as the weights of the current model.
model.load_weights(filepath)
y_pred = model.predict(X_val)
if from_logits:
y_pred = tf.nn.softmax(y_pred).numpy().argmax(axis=-1)
else:
y_pred = y_pred.argmax(axis=-1)
labels = y_val_onehot.argmax(axis=-1)
acc[sub, train] = accuracy_score(labels, y_pred)
kappa[sub, train] = cohen_kappa_score(labels, y_pred)
# Get the current 'OUT' time to calculate the 'run' training time
out_run = time.time()
# Print & write performance measures for each run
info = 'Subject: {} seed {} time: {:.1f} m '.format(sub+1, train+1, ((out_run-in_run)/60))
info = info + 'valid_acc: {:.4f} valid_loss: {:.3f}'.format(acc[sub, train], min(history.history['val_loss']))
print(info)
log_write.write(info +'\n')
# If current training run is better than previous runs, save the history.
if(BestSubjAcc < acc[sub, train]):
BestSubjAcc = acc[sub, train]
bestTrainingHistory = history
# Store the path of the best model among several runs
best_run = np.argmax(acc[sub,:])
filepath = '/saved models/run-{}/subject-{}.h5'.format(best_run+1, sub+1)+'\n'
best_models.write(filepath)
# Plot Learning curves
if (LearnCurves == True):
print('Plot Learning Curves ....... ')
draw_learning_curves(bestTrainingHistory, sub+1)
# Get the current 'OUT' time to calculate the overall training time
out_exp = time.time()
# Print & write the validation performance using all seeds
head1 = head2 = ' '
for sub in range(n_sub):
head1 = head1 + 'sub_{} '.format(sub+1)
head2 = head2 + '----- '
head1 = head1 + ' average'
head2 = head2 + ' -------'
info = '\n---------------------------------\nValidation performance (acc %):'
info = info + '\n---------------------------------\n' + head1 +'\n'+ head2
for run in range(n_train):
info = info + '\nSeed {}: '.format(run+1)
for sub in range(n_sub):
info = info + '{:.2f} '.format(acc[sub, run]*100)
info = info + ' {:.2f} '.format(np.average(acc[:, run])*100)
info = info + '\n---------------------------------\nAverage acc - all seeds: '
info = info + '{:.2f} %\n\nTrain Time - all seeds: {:.1f}'.format(np.average(acc)*100, (out_exp-in_exp)/(60))
info = info + ' min\n---------------------------------\n'
print(info)
log_write.write(info+'\n')
# Close open files
best_models.close()
log_write.close()
#%% Evaluation
def test(model, dataset_conf, results_path, allRuns = True):
# Open the "Log" file to write the evaluation results
log_write = open(results_path + "/log.txt", "a")
# Get dataset paramters
dataset = dataset_conf.get('name')
n_classes = dataset_conf.get('n_classes')
n_sub = dataset_conf.get('n_sub')
data_path = dataset_conf.get('data_path')
isStandard = dataset_conf.get('isStandard')
LOSO = dataset_conf.get('LOSO')
classes_labels = dataset_conf.get('cl_labels')
# Test the performance based on several runs (seeds)
runs = os.listdir(results_path+"/saved models")
# Initialize variables
acc = np.zeros((n_sub, len(runs)))
kappa = np.zeros((n_sub, len(runs)))
cf_matrix = np.zeros([n_sub, len(runs), n_classes, n_classes])
# Iteration over subjects
# for sub in range(n_sub-1, n_sub): # (num_sub): for all subjects, (i-1,i): for the ith subject.
inference_time = 0 # inference_time: classification time for one trial
for sub in range(n_sub): # (num_sub): for all subjects, (i-1,i): for the ith subject.
# Load data
_, _, _, X_test, _, y_test_onehot = get_data(data_path, sub, dataset, LOSO = LOSO, isStandard = isStandard)
# Iteration over runs (seeds)
for seed in range(len(runs)):
# Load the model of the seed.
model.load_weights('{}/saved models/{}/subject-{}.h5'.format(results_path, runs[seed], sub+1))
inference_time = time.time()
# Predict MI task
y_pred = model.predict(X_test).argmax(axis=-1)
inference_time = (time.time() - inference_time)/X_test.shape[0]
# Calculate accuracy and K-score
labels = y_test_onehot.argmax(axis=-1)
acc[sub, seed] = accuracy_score(labels, y_pred)
kappa[sub, seed] = cohen_kappa_score(labels, y_pred)
# Calculate and draw confusion matrix
cf_matrix[sub, seed, :, :] = confusion_matrix(labels, y_pred, normalize='true')
# draw_confusion_matrix(cf_matrix[sub, seed, :, :], str(sub+1), results_path, classes_labels)
# Print & write the average performance measures for all subjects
head1 = head2 = ' '
for sub in range(n_sub):
head1 = head1 + 'sub_{} '.format(sub+1)
head2 = head2 + '----- '
head1 = head1 + ' average'
head2 = head2 + ' -------'
info = '\n' + head1 +'\n'+ head2
info = '\n---------------------------------\nTest performance (acc & k-score):\n'
info = info + '---------------------------------\n' + head1 +'\n'+ head2
for run in range(len(runs)):
info = info + '\nSeed {}: '.format(run+1)
info_acc = '(acc %) '
info_k = ' (k-sco) '
for sub in range(n_sub):
info_acc = info_acc + '{:.2f} '.format(acc[sub, run]*100)
info_k = info_k + '{:.3f} '.format(kappa[sub, run])
info_acc = info_acc + ' {:.2f} '.format(np.average(acc[:, run])*100)
info_k = info_k + ' {:.3f} '.format(np.average(kappa[:, run]))
info = info + info_acc + '\n' + info_k
info = info + '\n----------------------------------\nAverage - all seeds (acc %): '
info = info + '{:.2f}\n (k-sco): '.format(np.average(acc)*100)
info = info + '{:.3f}\n\nInference time: {:.2f}'.format(np.average(kappa), inference_time * 1000)
info = info + ' ms per trial\n----------------------------------\n'
print(info)
log_write.write(info+'\n')
# Draw a performance bar chart for all subjects
draw_performance_barChart(n_sub, acc.mean(1), 'Accuracy')
draw_performance_barChart(n_sub, kappa.mean(1), 'k-score')
# Draw confusion matrix for all subjects (average)
draw_confusion_matrix(cf_matrix.mean((0,1)), 'All', results_path, classes_labels)
# Close opened file
log_write.close()
#%%
def getModel(model_name, dataset_conf, from_logits = False):
n_classes = dataset_conf.get('n_classes')
n_channels = dataset_conf.get('n_channels')
in_samples = dataset_conf.get('in_samples')
# Select the model
if(model_name == 'ATCNet'):
# Train using the proposed ATCNet model: https://ieeexplore.ieee.org/document/9852687
model = models.ATCNet_(
# Dataset parameters
n_classes = n_classes,
in_chans = n_channels,
in_samples = in_samples,
# Sliding window (SW) parameter
n_windows = 5,
# Attention (AT) block parameter
attention = 'mha', # Options: None, 'mha','mhla', 'cbam', 'se'
# Convolutional (CV) block parameters
eegn_F1 = 16,
eegn_D = 2,
eegn_kernelSize = 64,
eegn_poolSize = 7,
eegn_dropout = 0.3,
# Temporal convolutional (TC) block parameters
tcn_depth = 2,
tcn_kernelSize = 4,
tcn_filters = 32,
tcn_dropout = 0.3,
tcn_activation='elu',
)
elif(model_name == 'TCNet_Fusion'):
# Train using TCNet_Fusion: https://doi.org/10.1016/j.bspc.2021.102826
model = models.TCNet_Fusion(n_classes = n_classes, Chans=n_channels, Samples=in_samples)
elif(model_name == 'EEGTCNet'):
# Train using EEGTCNet: https://arxiv.org/abs/2006.00622
model = models.EEGTCNet(n_classes = n_classes, Chans=n_channels, Samples=in_samples)
elif(model_name == 'EEGNet'):
# Train using EEGNet: https://arxiv.org/abs/1611.08024
model = models.EEGNet_classifier(n_classes = n_classes, Chans=n_channels, Samples=in_samples)
elif(model_name == 'EEGNeX'):
# Train using EEGNeX: https://arxiv.org/abs/2207.12369
model = models.EEGNeX_8_32(n_timesteps = in_samples , n_features = n_channels, n_outputs = n_classes)
elif(model_name == 'DeepConvNet'):
# Train using DeepConvNet: https://doi.org/10.1002/hbm.23730
model = models.DeepConvNet(nb_classes = n_classes , Chans = n_channels, Samples = in_samples)
elif(model_name == 'ShallowConvNet'):
# Train using ShallowConvNet: https://doi.org/10.1002/hbm.23730
model = models.ShallowConvNet(nb_classes = n_classes , Chans = n_channels, Samples = in_samples)
elif(model_name == 'MBEEG_SENet'):
# Train using MBEEG_SENet: https://www.mdpi.com/2075-4418/12/4/995
model = models.MBEEG_SENet(nb_classes = n_classes , Chans = n_channels, Samples = in_samples)
else:
raise Exception("'{}' model is not supported yet!".format(model_name))
return model
#%%
def run():
# Define dataset parameters
dataset = 'HGD' # Options: 'BCI2a','HGD', 'CS2R'
if dataset == 'BCI2a':
in_samples = 1125
n_channels = 22
n_sub = 9
n_classes = 4
classes_labels = ['Left hand', 'Right hand','Foot','Tongue']
data_path = os.path.expanduser('~') + '/BCI Competition IV/BCI Competition IV-2a/BCI Competition IV 2a mat/'
elif dataset == 'HGD':
in_samples = 1125
n_channels = 44
n_sub = 14
n_classes = 4
classes_labels = ['Right Hand', 'Left Hand','Rest','Feet']
data_path = os.path.expanduser('~') + '/mne_data/MNE-schirrmeister2017-data/robintibor/high-gamma-dataset/raw/master/data/'
elif dataset == 'CS2R':
in_samples = 1125
# in_samples = 576
n_channels = 32
n_sub = 18
n_classes = 3
# classes_labels = ['Fingers', 'Wrist','Elbow','Rest']
classes_labels = ['Fingers', 'Wrist','Elbow']
# classes_labels = ['Fingers', 'Elbow']
data_path = os.path.expanduser('~') + '/CS2R MI EEG dataset/all/EDF - Cleaned - phase one (remove extra runs)/two sessions/'
else:
raise Exception("'{}' dataset is not supported yet!".format(dataset))
# Create a folder to store the results of the experiment
results_path = os.getcwd() + "/results"
if not os.path.exists(results_path):
os.makedirs(results_path) # Create a new directory if it does not exist
# Set dataset paramters
dataset_conf = { 'name': dataset, 'n_classes': n_classes, 'cl_labels': classes_labels,
'n_sub': n_sub, 'n_channels': n_channels, 'in_samples': in_samples,
'data_path': data_path, 'isStandard': True, 'LOSO': False}
# Set training hyperparamters
train_conf = { 'batch_size': 64, 'epochs': 500, 'patience': 100, 'lr': 0.001,'n_train': 1,
'LearnCurves': True, 'from_logits': False, 'model':'ATCNet'}
# Train the model
# train(dataset_conf, train_conf, results_path)
# Evaluate the model based on the weights saved in the '/results' folder
model = getModel(train_conf.get('model'), dataset_conf)
test(model, dataset_conf, results_path)
#%%
if __name__ == "__main__":
run()