-
Notifications
You must be signed in to change notification settings - Fork 52
/
MnasNet.py
137 lines (113 loc) · 4.3 KB
/
MnasNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from torch.autograd import Variable
import torch.nn as nn
import torch
import math
def Conv_3x3(inp, oup, stride):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU6(inplace=True)
)
def Conv_1x1(inp, oup):
return nn.Sequential(
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
nn.ReLU6(inplace=True)
)
def SepConv_3x3(inp, oup): #input=32, output=16
return nn.Sequential(
# dw
nn.Conv2d(inp, inp , 3, 1, 1, groups=inp, bias=False),
nn.BatchNorm2d(inp),
nn.ReLU6(inplace=True),
# pw-linear
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio, kernel):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
self.use_res_connect = self.stride == 1 and inp == oup
self.conv = nn.Sequential(
# pw
nn.Conv2d(inp, inp * expand_ratio, 1, 1, 0, bias=False),
nn.BatchNorm2d(inp * expand_ratio),
nn.ReLU6(inplace=True),
# dw
nn.Conv2d(inp * expand_ratio, inp * expand_ratio, kernel, stride, kernel // 2, groups=inp * expand_ratio, bias=False),
nn.BatchNorm2d(inp * expand_ratio),
nn.ReLU6(inplace=True),
# pw-linear
nn.Conv2d(inp * expand_ratio, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MnasNet(nn.Module):
def __init__(self, n_class=1000, input_size=224, width_mult=1.):
super(MnasNet, self).__init__()
# setting of inverted residual blocks
self.interverted_residual_setting = [
# t, c, n, s, k
[3, 24, 3, 2, 3], # -> 56x56
[3, 40, 3, 2, 5], # -> 28x28
[6, 80, 3, 2, 5], # -> 14x14
[6, 96, 2, 1, 3], # -> 14x14
[6, 192, 4, 2, 5], # -> 7x7
[6, 320, 1, 1, 3], # -> 7x7
]
assert input_size % 32 == 0
input_channel = int(32 * width_mult)
self.last_channel = int(1280 * width_mult) if width_mult > 1.0 else 1280
# building first two layer
self.features = [Conv_3x3(3, input_channel, 2), SepConv_3x3(input_channel, 16)]
input_channel = 16
# building inverted residual blocks (MBConv)
for t, c, n, s, k in self.interverted_residual_setting:
output_channel = int(c * width_mult)
for i in range(n):
if i == 0:
self.features.append(InvertedResidual(input_channel, output_channel, s, t, k))
else:
self.features.append(InvertedResidual(input_channel, output_channel, 1, t, k))
input_channel = output_channel
# building last several layers
self.features.append(Conv_1x1(input_channel, self.last_channel))
self.features.append(nn.AdaptiveAvgPool2d(1))
# make it nn.Sequential
self.features = nn.Sequential(*self.features)
# building classifier
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(self.last_channel, n_class),
)
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x = x.view(-1, self.last_channel)
x = self.classifier(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.weight.size(1)
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
if __name__ == '__main__':
net = MnasNet()
x_image = Variable(torch.randn(1, 3, 224, 224))
y = net(x_image)
# print(y)