-
Notifications
You must be signed in to change notification settings - Fork 147
/
train_text_recognition.py
299 lines (268 loc) · 12.2 KB
/
train_text_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import argparse
import copy
import datetime
import json
import os
import shutil
import chainer
import numpy as np
from chainer.iterators import MultiprocessIterator
from chainer.training import extensions
from chainer.training.updaters import MultiprocessParallelUpdater
from commands.interactive_train import open_interactive_prompt
from datasets.file_dataset import TextRecFileDataset
from datasets.sub_dataset import split_dataset, split_dataset_n_random
from insights.text_rec_bbox_plotter import TextRecBBOXPlotter
from metrics.textrec_metrics import TextRecSoftmaxMetrics
from models.ic_stn import InverseCompositionalLocalizationNet
from models.text_recognition import TextRecognitionNet, TextRecNet
from utils.baby_step_curriculum import BabyStepCurriculum
from utils.datatypes import Size
from utils.multi_accuracy_classifier import Classifier
from utils.train_utils import add_default_arguments, get_fast_evaluator, get_trainer, \
get_concat_and_pad_examples, get_definition_filepath, get_definition_filename
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Tool to train a text detection network based on Spatial Transformers")
parser.add_argument('dataset_specification',
help='path to json file that contains all datasets to use in a list of dicts')
parser.add_argument("--blank-label", type=int, default=0, help="blank label to use during training")
parser.add_argument("--char-map", help="path to char map")
parser.add_argument("--send-bboxes", action='store_true', default=False,
help="send predicted bboxes for each iteration")
parser.add_argument("--port", type=int, default=1337, help="port to connect to for sending bboxes")
parser.add_argument("--area-factor", type=float, default=0, help="factor for incorporating area loss")
parser.add_argument("--area-scale-factor", type=float, default=2, help="area scale factor for changing area loss over time")
parser.add_argument("--aspect-factor", type=float, default=0, help="for for incorporating aspect ratio loss")
parser.add_argument("--load-localization", action='store_true', default=False, help="only load localization net")
parser.add_argument("--load-recognition", action='store_true', default=False, help="only load recognition net")
parser.add_argument("--is-trainer-snapshot", action='store_true', default=False,
help="indicate that snapshot to load has been saved by trainer itself")
parser.add_argument("--no-log", action='store_false', default=True, help="disable logging")
parser.add_argument("--freeze-localization", action='store_true', default=False,
help='freeze weights of localization net')
parser.add_argument("--zoom", type=float, default=0.9, help="Zoom for initial bias of spatial transformer")
parser.add_argument("--optimize-all-interval", type=int, default=5,
help="interval in which to optimize the whole network instead of only a part")
parser.add_argument("--use-dropout", action='store_true', default=False, help='use dropout in network')
parser.add_argument("--test-image", help='path to an image that should be used by BBoxPlotter')
parser.add_argument("--refinement-steps", type=int, default=1, help="number of iterations IC-STN shall perform to refine bbox proposals")
parser.add_argument("--num-processes", type=int, help="number of processes to use for data loading")
parser.add_argument("--use-serial-iterator", action='store_true', default=False, help="indicate that you do not want to use the multi process iterator")
parser.add_argument("--refinement", action='store_true', default=False, help='enable param refinement with IC-STN')
parser.add_argument("--render-all-bboxes", action='store_true', default=False, help="bbox plotter also renders all intermediate bboxes")
parser = add_default_arguments(parser)
args = parser.parse_args()
image_size = Size(width=200, height=64)
target_shape = Size(width=50, height=50)
# attributes that need to be adjusted, once the Curriculum decides to use
# a more difficult dataset
# this is a 'map' of attribute name to path in trainer object
attributes_to_adjust = [
('num_timesteps', ['predictor', 'localization_net']),
('num_timesteps', ['predictor', 'recognition_net']),
('num_timesteps', ['lossfun', '__self__']),
('num_labels', ['predictor', 'recognition_net']),
]
with open(args.char_map, 'r') as fp:
char_map = json.load(fp)
num_labels = len(char_map)
curriculum = BabyStepCurriculum(
args.dataset_specification,
TextRecFileDataset,
args.blank_label,
args.gpus,
attributes_to_adjust=attributes_to_adjust,
trigger=(args.test_interval, 'iteration'),
min_delta=1.0,
dataset_args={
'char_map': args.char_map,
'resize_size': target_shape,
'blank_label': args.blank_label,
}
)
train_dataset, validation_dataset = curriculum.load_dataset(0)
train_dataset.resize_size = image_size
validation_dataset.resize_size = image_size
metrics = TextRecSoftmaxMetrics(
args.blank_label,
args.char_map,
train_dataset.num_timesteps,
image_size,
area_loss_factor=args.area_factor,
aspect_ratio_loss_factor=args.aspect_factor,
area_scaling_factor=args.area_scale_factor,
)
localization_net = InverseCompositionalLocalizationNet(
args.dropout_ratio,
train_dataset.num_timesteps,
args.refinement_steps,
target_shape,
zoom=args.zoom,
do_parameter_refinement=args.refinement
)
recognition_net = TextRecognitionNet(
target_shape,
num_rois=train_dataset.num_timesteps,
label_size=num_labels,
)
net = TextRecNet(localization_net, recognition_net)
model = Classifier(net, ('accuracy',), lossfun=metrics.calc_loss, accfun=metrics.calc_accuracy,
provide_label_during_forward=False)
if args.resume is not None:
with np.load(args.resume) as f:
if args.load_localization:
if args.is_trainer_snapshot:
chainer.serializers.NpzDeserializer(f)['/updater/model:main/predictor/localization_net'].load(
localization_net)
else:
chainer.serializers.NpzDeserializer(f, strict=False)['localization_net'].load(localization_net)
elif args.load_recognition:
if args.is_trainer_snapshot:
chainer.serializers.NpzDeserializer(f)['/updater/model:main/predictor/recognition_net'].load(
recognition_net
)
else:
chainer.serializers.NpzDeserializer(f)['recognition_net'].load(recognition_net)
else:
if args.is_trainer_snapshot:
chainer.serializers.NpzDeserializer(f)['/updater/model:main/predictor'].load(net)
else:
chainer.serializers.NpzDeserializer(f).load(net)
optimizer = chainer.optimizers.Adam(alpha=args.learning_rate)
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer.WeightDecay(0.0005))
optimizer.add_hook(chainer.optimizer.GradientClipping(2))
# freeze localization net
if args.freeze_localization:
localization_net.disable_update()
if len(args.gpus) > 1:
gpu_datasets = split_dataset_n_random(train_dataset, len(args.gpus))
if not len(gpu_datasets[0]) == len(gpu_datasets[-1]):
adapted_second_split = split_dataset(gpu_datasets[-1], len(gpu_datasets[0]))[0]
gpu_datasets[-1] = adapted_second_split
else:
gpu_datasets = [train_dataset]
if args.use_serial_iterator:
train_iterators = [chainer.iterators.SerialIterator(dataset, args.batch_size) for dataset in gpu_datasets]
validation_iterator = chainer.iterators.SerialIterator(validation_dataset, args.batch_size)
else:
train_iterators = [
MultiprocessIterator(dataset, args.batch_size, n_processes=args.num_processes)
for dataset in gpu_datasets
]
validation_iterator = MultiprocessIterator(
validation_dataset,
args.batch_size,
n_processes=args.num_processes,
repeat=False
)
updater = MultiprocessParallelUpdater(
train_iterators,
optimizer,
devices=args.gpus,
converter=get_concat_and_pad_examples(args.blank_label)
)
updater.setup_workers()
log_dir = os.path.join(args.log_dir, "{}_{}".format(datetime.datetime.now().isoformat(), args.log_name))
args.log_dir = log_dir
# backup current file
if not os.path.exists(log_dir):
os.makedirs(log_dir, exist_ok=True)
shutil.copy(__file__, log_dir)
# log all necessary configuration params
report = {
'log_dir': log_dir,
'image_size': image_size,
'target_size': target_shape,
'localization_net': [localization_net.__class__.__name__, get_definition_filename(localization_net)],
'recognition_net': [recognition_net.__class__.__name__, get_definition_filename(recognition_net)],
'fusion_net': [net.__class__.__name__, get_definition_filename(net)],
}
for argument in filter(lambda x: not x.startswith('_'), dir(args)):
report[argument] = getattr(args, argument)
# callback that logs report
def log_postprocess(stats_cpu):
if stats_cpu['iteration'] == args.log_interval:
stats_cpu.update(report)
fields_to_print = [
'epoch',
'iteration',
'main/loss',
'main/accuracy',
'lr',
'fast_validation/main/loss',
'fast_validation/main/accuracy',
'validation/main/loss',
'validation/main/accuracy',
]
FastEvaluator = get_fast_evaluator((args.test_interval, 'iteration'))
evaluator = (
FastEvaluator(
validation_iterator,
model,
device=updater._devices[0],
eval_func=lambda *args: model(*args),
num_iterations=args.test_iterations,
converter=get_concat_and_pad_examples(args.blank_label)
),
(args.test_interval, 'iteration')
)
epoch_validation_iterator = copy.copy(validation_iterator)
epoch_validation_iterator._repeat = False
epoch_evaluator = (
chainer.training.extensions.Evaluator(
epoch_validation_iterator,
model,
device=updater._devices[0],
converter=get_concat_and_pad_examples(args.blank_label),
),
(1, 'epoch')
)
model_snapshotter = (
extensions.snapshot_object(net, 'model_{.updater.iteration}.npz'), (args.snapshot_interval, 'iteration'))
# bbox plotter test
if not args.test_image:
test_image = validation_dataset.get_example(0)[0]
else:
test_image = train_dataset.load_image(args.test_image)
bbox_plotter = (TextRecBBOXPlotter(
test_image,
os.path.join(log_dir, 'boxes'),
target_shape,
metrics,
send_bboxes=args.send_bboxes,
upstream_port=args.port,
visualization_anchors=[["localization_net", "vis_anchor"], ["recognition_net", "vis_anchor"]],
render_extracted_rois=False,
invoke_before_training=True,
render_intermediate_bboxes=args.render_all_bboxes,
), (10, 'iteration'))
trainer = get_trainer(
net,
updater,
log_dir,
fields_to_print,
curriculum=curriculum,
epochs=args.epochs,
snapshot_interval=args.snapshot_interval,
print_interval=args.log_interval,
extra_extensions=(
evaluator,
epoch_evaluator,
model_snapshotter,
bbox_plotter,
(curriculum, (args.test_interval, 'iteration')),
),
postprocess=log_postprocess,
do_logging=args.no_log,
model_files=[
get_definition_filepath(localization_net),
get_definition_filepath(recognition_net),
get_definition_filepath(net),
],
)
open_interactive_prompt(
bbox_plotter=bbox_plotter[0],
curriculum=curriculum,
)
trainer.run()