-
Notifications
You must be signed in to change notification settings - Fork 0
/
pretrain.py
192 lines (148 loc) · 5.45 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import argparse
import json
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms
from torch.cuda.amp.grad_scaler import GradScaler
from torch.utils.data import DataLoader
from models.backbone import BackBoneEncoder
from utils.meters import AverageMeter
# Apply augmentations twice for each image
class TwoCropTransform:
def __init__(self, base_transform):
self.base_transform = base_transform
def __call__(self, image):
q = self.base_transform(image)
k = self.base_transform(image)
return [q, k]
# Training Loop
def train(model, criterion, optimizer, loader, epoch, scaler, scheduler):
losses = AverageMeter("Loss", ":.4f")
for _, (images, _) in enumerate(loader):
optimizer.zero_grad()
# Conversion to fp16
with torch.autocast("cuda", dtype=torch.float16):
images[0] = images[0].to(device, non_blocking=True)
images[1] = images[1].to(device, non_blocking=True)
p1, p2, z1, z2 = model(images[0], images[1])
# Loss as described in the original paper, note z's do not contribute to grad
loss = -(criterion(p1, z2).mean() + criterion(p2, z1).mean()) * 0.5
losses.update(loss.item(), images[0].shape[0])
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
print(f"Epoch : {epoch} , {losses}")
return losses.avg
def main():
with open(args.config, "r") as f:
config = json.load(f)
model = BackBoneEncoder(
models.__dict__[args.model],
args.encoder_dim,
args.pred_dim,
in_pretrain=True,
).to(device)
augmentation = [
transforms.RandomResizedCrop(32, scale=(0.2, 1.0)),
transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.6),
transforms.RandomHorizontalFlip(),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
batch_size = args.batch_size
current_epoch = 0
num_epochs = args.num_epochs
train_data = datasets.CIFAR10(
root="data",
train=True,
download=True,
transform=TwoCropTransform(transforms.Compose(augmentation)),
)
loader = DataLoader(
train_data, batch_size=batch_size, shuffle=True, num_workers=args.num_workers
)
criterion = nn.CosineSimilarity(dim=-1).to("cuda")
optim_config = config["optimizer"]
optimizer = optim.SGD(
model.parameters(),
lr=optim_config["lr"],
momentum=optim_config["momentum"],
weight_decay=optim_config["weight_decay"],
)
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(
optimizer, T_0=100, verbose=True
)
if config["checkpoint"]:
checkpoint = torch.load(config["path_to_checkpoint"])
model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
scheduler.load_state_dict(checkpoint["scheduler"])
current_epoch = checkpoint["epoch"]
loss_history = checkpoint["loss"]
print(
f"Resuming Training from Epoch {current_epoch}, Last Loss {loss_history[-1]}"
)
model.train()
scaler = GradScaler()
loss_history = list()
for epoch in range(current_epoch, num_epochs):
print(f"Epoch {epoch}")
avg_epoch_loss = train(
model, criterion, optimizer, loader, epoch, scaler, scheduler
)
scheduler.step(epoch)
loss_history.append(avg_epoch_loss)
torch.save(
{
"epoch": epoch,
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"loss": loss_history,
"scheduler": scheduler.state_dict(),
},
config["path_to_checkpoint"],
)
config["checkpoint"] = True
with open(args.config, "w") as out:
json.dump(config, out, indent=4)
print("Checkpoint Saved")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Pretrain the backbone")
parser.add_argument(
"--config",
help="path to the config file, any command line argument will override the config file",
type=str,
)
parser.add_argument(
"--device", help="Whant device to use", choices=["cpu", "gpu"], type=str
)
parser.add_argument(
"--model",
help="Choose the backbone for the simsiam network",
choices=["resnet18", "resnet50"],
type=str,
)
parser.add_argument(
"--num_epochs",
help="Total number of epoch for pretraining path to checkpoint in config file",
type=int,
)
parser.add_argument(
"--encoder_dim", help="Output dimension for the encoder", type=int
)
parser.add_argument(
"--pred_dim", help="Output dimension for the predictor", type=int
)
parser.add_argument("--batch_size", help="Batch size", type=int)
parser.add_argument("--num_workers", type=int, default=1)
parser.add_argument(
"--fp16", help="If True use mixed point precision", default=True
)
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() and args.device == "gpu" else "cpu"
print(f"[ + ] Device set to: {device}")
main()