-
Notifications
You must be signed in to change notification settings - Fork 9
/
generate_test_results.py
347 lines (288 loc) · 12.4 KB
/
generate_test_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
'''
Project: SelfSupSurg
-----
Copyright (c) University of Strasbourg, All Rights Reserved.
'''
import os
import sys
import glob
import json
import numpy as np
from pathlib import Path
from skimage import measure
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_recall_fscore_support as score
from model_helpers import mAP
root_dir = 'runs/'
sub_dir = ''
feat_dir = 'extracted_features'
header_tool = 'no, mAP, experiment\n'
header_phase = 'no, accuracy, precision, recall, f-score, support, experiment\n'
header_tool_class = 'no, AP_T1, AP_T2, AP_T3, AP_T4, AP_T5, AP_T6, AP_T7, experiment\n'
header_phase_class = 'no, F1_P1, F1_P2, F1_P3, F1_P4, F1_P5, F1_P6, F1_P7, experiment\n'
def class_metrics(labels, predictions, num_cls=7):
exp_labels = np.array(range(num_cls))
missing = [idx for idx in exp_labels if idx not in labels and idx not in predictions]
class_score = score(labels, predictions)
for miss in missing:
class_score = [np.insert(np.float32(sc), miss, np.nan) for sc in class_score]
return class_score
def read_predictions(path):
path_str = str(path)
if os.path.isfile(os.path.join(path_str,'inds_all.npy')):
inds = np.load(os.path.join(path_str,'inds_all.npy'))
preds = np.load(os.path.join(path_str,'features_all.npy'))
targets = np.load(os.path.join(path_str,'targets_all.npy'))
else:
finds = sorted(glob.glob(os.path.join(path_str,'*inds.npy')))
fpreds = sorted(glob.glob(os.path.join(path_str,'*features.npy')))
ftargets = sorted(glob.glob(os.path.join(path_str,'*targets.npy')))
if not finds: return [], [], []
inds = np.concatenate([np.load(f) for f in finds])
preds = np.concatenate([np.load(f) for f in fpreds])
targets = np.concatenate([np.load(f) for f in ftargets])
nps = [inds, preds, targets]
fnames = ['inds', 'features', 'targets']
for i, arr in enumerate(nps):
with open(os.path.join(path_str, '{}_all.npy'.format(fnames[i])), 'wb') as f:
np.save(f, arr)
files = finds + fpreds + ftargets
for f in files:
os.remove(f)
idxs = np.argsort(inds)
inds = inds[idxs]
preds = preds[idxs]
targets = targets[idxs]
return inds, preds, targets
def normalize_predictions(predicts):
predicts_norm = np.argmax(predicts, axis=1)
return predicts_norm
def compute_phase_scores(inds, labels, predicts, agg, directory=''):
if agg == 'class' and len(labels) == 0: return [-1] * 7,[]
if len(labels) == 0: return [-1] * 5, []
labels = labels.squeeze()
preds = normalize_predictions(predicts)
if agg == 'frame':
scores = score(labels, preds)
acc = np.sum(labels == preds) * 100 / len(labels)
acc = np.around(acc, 2)
mean = np.mean(np.vstack(scores).T, axis=0)
mean[:-1] *= 100
mean = np.around(mean, 2)
mean = [acc] + mean.tolist()
std = np.std(np.vstack(scores).T, axis=0)
std[:-1] *= 100
std = np.around(std, 2)
std = std.tolist()
elif agg == 'class':
# split labels, preds by video
vid = np.floor_divide(inds, 100000000)
class_f1 = []
for v in np.unique(vid):
sub_inds = np.argwhere(vid == v)
sub_labels = labels[sub_inds]
sub_preds = preds[sub_inds]
# compute F1
vid_score = class_metrics(sub_labels, sub_preds)
class_f1.append(np.array(vid_score[2])*100)
print(len(class_f1), len(class_f1[0]))
mean = np.around(np.nanmean(class_f1, axis=0), 2).tolist()
std = np.around(np.nanstd(class_f1, axis=0), 2).tolist()
elif agg == 'video':
# split labels, preds by video
vid = np.floor_divide(inds, 100000000)
accs = []
scores = []
for v in np.unique(vid):
sub_inds = np.argwhere(vid == v)
sub_labels = labels[sub_inds]
sub_preds = preds[sub_inds]
# compute acc and append
vid_acc = np.sum(sub_labels == sub_preds) * 100 / len(sub_labels)
accs.append(vid_acc)
# compute F1
vid_score = score(sub_labels, sub_preds)
mean = np.mean(np.vstack(vid_score).T, axis=0)
mean[:-1] *= 100
scores.append(mean)
# summarize
overall_acc = np.mean(np.stack(accs))
overall_acc = np.around(overall_acc, 2)
overall_f1 = np.mean(np.stack(scores), axis=0)
overall_f1 = np.around(overall_f1, 2)
mean = [overall_acc] + overall_f1.tolist()
std = np.std(np.stack(scores), axis=0)
std = np.around(std, 2)
std = [np.std(np.stack(accs))] + std.tolist()
elif agg == 'video_relaxed':
# split labels, preds by video
frame_order = np.argsort(inds)
labels = labels[frame_order]
preds = preds[frame_order]
inds = inds[frame_order]
vid = np.floor_divide(inds, 100000000)
accs = []
scores = []
for v in np.unique(vid):
sub_inds = np.argwhere(vid == v)
sub_labels = labels[sub_inds]
sub_preds = preds[sub_inds]
vid_prec, vid_rec, vid_f1, vid_jacc, vid_acc = compute_phase_relaxed_scores(sub_preds,
sub_labels)
accs.append(vid_acc)
scores.append([np.nanmean(vid_prec), np.nanmean(vid_rec), np.nanmean(vid_f1), -1])
mean = [np.mean(np.stack(accs))] + np.mean(np.stack(scores), axis=0).tolist()
std = [np.std(np.stack(accs))] + np.std(np.stack(scores), axis=0).tolist()
return mean, std
def compute_phase_relaxed_scores(preds, targets, boundary_size=10):
#EVALUATE
# A function to evaluate the performance of the phase recognition method
# providing jaccard index, precision, and recall for each phase
# and accuracy over the surgery. All metrics are computed in a relaxed
# boundary mode.
# OUTPUT:
# res: the jaccard index per phase (relaxed) - NaN for non existing phase in GT
# prec: precision per phase (relaxed) - NaN for non existing phase in GT
# rec: recall per phase (relaxed) - NaN for non existing phase in GT
# acc: the accuracy over the video (relaxed)
res, prec, rec = [], [], []
diff = preds - targets
updatedDiff = diff.copy()
# obtain the true positive with relaxed boundary
for iPhase in range(7):
labels, num = measure.label(targets == iPhase, return_num=True)
for iConn in range(1, num + 1):
comp = np.argwhere(labels == iConn)
startIdx = np.min(comp)
endIdx = np.max(comp) + 1
curDiff = diff[startIdx:endIdx]
# in the case where the phase is shorter than the relaxed boundary
t = boundary_size
if t > len(curDiff):
t = len(curDiff)
# relaxed boundary
# revised for cholec80 dataset !!!!!!!!!!!
if iPhase == 3 or iPhase == 4: # Gallbladder dissection and packaging might jump between two phases
curDiff[:t][curDiff[:t] == -1] = 0 # late transition
# early transition, 5 can be predicted as 6/7 at the end > 5 followed by 6/7
curDiff[-t:][curDiff[-t:] == 1] = 0
curDiff[-t:][curDiff[-t:] == 2] = 0
elif iPhase == 5 or iPhase == 6: # Gallbladder dissection might jump between two phases
# late transition
curDiff[:t][curDiff[:t] == -1] = 0
curDiff[:t][curDiff[:t] == -2] = 0
# early transition
curDiff[-t:][curDiff[-t:] == 1] = 0
curDiff[-t:][curDiff[-t:] == 2] = 0
else:
# general situation
curDiff[:t][curDiff[:t] == -1] = 0 # late transition
curDiff[-t:][curDiff[-t:] == 1] = 0 # early transition
updatedDiff[startIdx:endIdx] = curDiff
# compute jaccard index, prec, and rec per phase
for iPhase in range(7):
gt_num = (targets == iPhase).sum()
if gt_num == 0:
# no iPhase in current ground truth, assigned NaN values
# SHOULD be excluded in the computation of mean (use nanmean)
res.append(np.nan)
prec.append(np.nan)
rec.append(np.nan)
continue
# get all indices where pred is iPhase
tp_and_fp = np.argwhere(preds == iPhase).flatten()
tp_and_fn = np.argwhere(targets == iPhase).flatten()
union = np.union1d(tp_and_fp, tp_and_fn)
# compute tp
tp = np.sum(updatedDiff[tp_and_fp] == 0)
# divide by union to get jaccard
jaccard = tp / len(union)
jaccard = jaccard * 100
res.append(jaccard)
# Compute prec and rec
prec.append(tp * 100 / len(tp_and_fp))
rec.append(tp * 100 / len(tp_and_fn))
# compute accuracy
acc = sum(updatedDiff == 0) / len(targets)
acc = acc * 100
# compute f1
prec = np.array(prec)
rec = np.array(rec)
f1 = 2 * prec * rec / (prec + rec)
res = np.array(res)
return prec, rec, f1, res, acc
def compute_tool_scores(inds, labels, predicts, agg, directory):
print('dir: ', directory)
try:
mean = [mAP(labels, predicts, istensor=False) * 100]
std = [0.00]
if agg == 'class':
mean = mAP(labels, predicts, mean=False, istensor=False) * 100
std = [0.00] * 7
except:
mean = [-1] * 7 if agg == 'class' else [-1.00]
std = [0.00] * 7 if agg == 'class' else [0.00]
return mean, std
def collect_metrics(directory, task='phase', agg='frame'):
inds, preds, targets = read_predictions(directory)
score_fn = compute_tool_scores if task == 'tools' else compute_phase_scores
metrics, stds = score_fn(inds, targets, preds, agg, directory)
return metrics, stds
def metrics_collator(directory, agg, task='phase', name='sr'):
results_str = header_tool if task =='tools' else header_phase
results_str = header_tool_class if agg == 'class' and task =='tools' else header_phase_class if agg == 'class' and task =='phase' else results_str
results_file = os.path.join(directory, 'metrics_{:s}.csv'.format('_'.join([task, name])))
new_dir = os.path.join(directory, sub_dir)
print('search: ', directory)
for i, path in enumerate(sorted(Path(new_dir).rglob(feat_dir), key=lambda p: str(p))):
if i == 0: print('collating dir:', directory)
if task not in str(path): continue
if feat_dir+'_Trunk' in str(path): continue
experiment = os.path.join(*str(path).split(str(directory))[-1].split('/')[:-1])
metric_and_std = collect_metrics(path, task, agg)
results = ','.join(map(lambda x, y: "{:.2f} +- {:.2f}".format(x, y), *metric_and_std))
results_str += ','.join([str(i), results, experiment]) + '\n'
if results_str == header_tool or results_str == header_phase or \
results_str == header_phase_class or results_str == header_tool_class: return
try:
with open(results_file, 'w') as fp:
fp.write(results_str)
print('collating dir: done!!!')
except:
print('warning: could not write to folder:', directory)
return
def Main(agg):
prev_path = []
prev_paths = []
tasks = ['phase', 'tools']
name = ''
for task in tasks:
prev_path = []
prev_paths = []
print('Evaluation task:', task)
for i, path in enumerate(sorted(Path(root_dir).rglob(task), key=lambda p: str(p))):
if 'test' not in str(path):
continue
print('test:', path)
path_dirs = str(path).split('/')
if path_dirs == prev_path:
continue
prev_path = path_dirs
for i, _ in enumerate(path_dirs[:1]):
src_dir = os.path.join(*path_dirs[:i+1])
if src_dir in prev_paths:
continue
prev_paths.append(src_dir)
metrics_collator(src_dir, agg, task=task, name=name)
return
if __name__ == '__main__':
if len(sys.argv) > 1:
# takes values for the type of metric to compute:
# 1. video - video based metrics
# 2. frame - frame wise metrics
# 3. class - per phase/tool class metrics
agg_mode = sys.argv[-1]
else:
# default set to video
agg_mode = 'video'
Main(agg_mode)