-
Notifications
You must be signed in to change notification settings - Fork 0
/
HashMap.java
2328 lines (2154 loc) · 75.3 KB
/
HashMap.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package java.util;
import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.Serializable;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.Function;
import sun.misc.SharedSecrets;
public class HashMap<K, V> extends AbstractMap<K, V> implements Map<K, V>, Cloneable, Serializable
{
private static final long serialVersionUID = 362498820763181265L;
/**
* 初始容量,必须是2的倍数
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
/**
* 最大容量,如果更高的值是由任何一个带有参数的构造函数隐式指定的,则使用该值。必须是2的倍数
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* 在构造函数中没有指定时使用的负载因子。
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* 使用tree而不是list的容器计数阈值。当向至少有这么多节点的bin中添加元素时,bin将被转换为tree。该值必须大于2,并且应该至少为8,以便与tree移除时关于收缩后转换回普通桶的假设相吻合。
*/
static final int TREEIFY_THRESHOLD = 8;
/**
* The bin count threshold for untreeifying a (split) bin during a resize
* operation. Should be less than TREEIFY_THRESHOLD, and at most 6 to mesh
* with shrinkage detection under removal.
*/
static final int UNTREEIFY_THRESHOLD = 6;
/**
* The smallest table capacity for which bins may be treeified. (Otherwise
* the table is resized if too many nodes in a bin.) Should be at least 4 *
* TREEIFY_THRESHOLD to avoid conflicts between resizing and treeification
* thresholds. 可以对容器进行treeified的最小table
* capacity。(否则,如果一个bin中有太多节点,就会重新调整table的大小。)至少4 *
* TREEIFY_THRESHOLD,以避免调整大小和treeification阀值之间的冲突。
*/
static final int MIN_TREEIFY_CAPACITY = 64;
/**
* Basic hash bin node, used for most entries. (See below for TreeNode
* subclass, and in LinkedHashMap for its Entry subclass.)
* 基本的哈希bin节点,用于大多数条目。(下面是TreeNode的子类,下面是LinkedHashMap的Entry子类。)
*/
static class Node<K, V> implements Map.Entry<K, V>
{
final int hash;
final K key;
V value;
Node<K, V> next;
Node(int hash, K key, V value, Node<K, V> next)
{
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey()
{
return key;
}
public final V getValue()
{
return value;
}
public final String toString()
{
return key + "=" + value;
}
public final int hashCode()
{
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue)
{
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o)
{
if (o == this)
return true;
if (o instanceof Map.Entry)
{
Map.Entry<?, ?> e = (Map.Entry<?, ?>)o;
if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
/* ---------------- Static utilities -------------- */
/*
* 将hashcode高位和低位的值做异或运算进一步混淆,低位的信息中加入了高位的信息,这样做不但增加了复杂性,高位的信息也保留了下来。
*/
static final int hash(Object key)
{
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
/**
* Returns x's Class if it is of the form "class C implements
* Comparable<C>", else null.
*/
static Class<?> comparableClassFor(Object x)
{
if (x instanceof Comparable)
{
Class<?> c;
Type[] ts, as;
Type t;
ParameterizedType p;
if ((c = x.getClass()) == String.class) // bypass checks
return c;
if ((ts = c.getGenericInterfaces()) != null)
{
for (int i = 0; i < ts.length; ++i)
{
if (((t = ts[i]) instanceof ParameterizedType)
&& ((p = (ParameterizedType)t).getRawType() == Comparable.class)
&& (as = p.getActualTypeArguments()) != null && as.length == 1 && as[0] == c) // type
// arg
// is
// c
return c;
}
}
}
return null;
}
/**
* Returns k.compareTo(x) if x matches kc (k's screened comparable class),
* else 0.
*/
@SuppressWarnings ({"rawtypes", "unchecked"}) // for cast to Comparable
static int compareComparables(Class<?> kc, Object k, Object x)
{
return (x == null || x.getClass() != kc ? 0 : ((Comparable)k).compareTo(x));
}
/**
* 保证返回的值是2的幂,即当cap是1-2-4-8-16-32...之间的任意数,(*2^N< cap <2^N+1),返回值为2^N+1。 int
* n = cap - 1; 作用:保证当cap为2的幂时,返回原值而不是二倍,如8 返回8 而不是16
*/
static final int tableSizeFor(int cap)
{
int n = cap - 1; // 作用:保证当cap为2的幂时,返回原值而不是二倍,如8 返回8 而不是16
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
/* ---------------- Fields -------------- */
/**
* table,第一次使用时初始化,并根据需要调整大小。当分配时,长度总是2的幂。(在某些操作中,我们还允许长度为零,以允许当前不需要的引导机制。)
* 实际存储key,value的数组,只不过key,value被封装成Node了
*/
transient Node<K, V>[] table;
/**
* H保存缓存entrySet().注意,AbstractMap字段( 域)用于keySet()和values()。
*/
transient Set<Map.Entry<K, V>> entrySet;
/**
* 此map中包含的键-值映射的数目。
*/
transient int size;
/**
* 结构修改次数
*/
transient int modCount;
/**
* 要调整大小的下一个大小值(容量*负载因子)。 The javadoc description is true upon
* serialization.Additionally, if the table array has not been allocated,
* this field holds the initial array capacity, or zero signifying
* DEFAULT_INITIAL_CAPACITY.)
*/
int threshold;
final float loadFactor;
/* ---------------- Public operations -------------- */
public HashMap(int initialCapacity, float loadFactor)
{
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
public HashMap(int initialCapacity)
{
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* 构造一个空的HashMap,默认初始容量(16)和默认负载因子(0.75)。
*/
public HashMap()
{
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
public HashMap(Map<? extends K, ? extends V> m)
{
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict)
{
int s = m.size();
if (s > 0)
{
if (table == null)
{ // 计算容量
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ? (int)ft : MAXIMUM_CAPACITY);
if (t > threshold)
threshold = tableSizeFor(t); // 设置下一个扩容容量值·
}
else if (s > threshold)
resize(); // 如果大于threshold 则先扩容
for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
{
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}
public int size()
{
return size;
}
public boolean isEmpty()
{
return size == 0;
}
public V get(Object key)
{
Node<K, V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K, V> getNode(int hash, Object key)
{
Node<K, V>[] tab;
Node<K, V> first, e;
int n;
K k;
if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null)
{
// 先判断第一个节点
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null)
{
// 若是树
if (first instanceof TreeNode)
return ((TreeNode<K, V>)first).getTreeNode(hash, key);
// 链表
do
{
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
public boolean containsKey(Object key)
{
return getNode(hash(key), key) != null;
}
/**
* 将指定值与此Map中的指定键关联。如果Map之前包含键的映射,则替换旧值。
*/
public V put(K key, V value)
{
return putVal(hash(key), key, value, false, true);
}
/**
* Implements Map.put and related methods.
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict)
{
Node<K, V>[] tab;
Node<K, V> p;
int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 为空直接赋值
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else
{
Node<K, V> e;
K k;
// 单节点直接赋值
if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 树节点走树节点逻辑
else if (p instanceof TreeNode)
e = ((TreeNode<K, V>)p).putTreeVal(this, tab, hash, key, value);
// 链表节点走链表节点逻辑
else
{
for (int binCount = 0;; ++binCount)
{
if ((e = p.next) == null)
{
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
// 链表过长转红黑树
treeifyBin(tab, hash);
break;
}
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 不为空替换旧值
if (e != null)
{ // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
/**
* 初始化或加倍表大小。如果为空,则按照字段阈值中持有的初始容量目标分配。否则,因为我们使用的是2的幂展开,所以每个bin中的元素必须保持相同的索引,或者在新表中以2的幂偏移移动。
*
* @return the table
*/
final Node<K, V>[] resize()
{
Node<K, V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
/*
* 如果oldCap > 0 说明table非null, oldCap为原table大小,oldThr为原阈值大小 = oldCap *
* loadFactor
*/
if (oldCap > 0)
{
// 如果oldcap大于最大值,阈值直接等于int最大值,当前resize操作执行不了直接返回,以后也不会再扩容
if (oldCap >= MAXIMUM_CAPACITY)
{
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 新容量为原来的二倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
/*
* 走到这说明oldCap <= 0,若此时oldThr > 0 充分说明此时hashMap是一个 table为空,threshold > 0
* 的初始状态(调用构造函数 HashMap(int initialCapacity, float loadFactor) 或
* HashMap(int initialCapacity) 或 HashMap(Map<? extends K, ? extends V>
* m),导致 table 为 null,Cap为0, threshold为用户指定的
* HashMap的初始容量),此时根据初始阈值直接初始化容量
*/
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
/*
* 走到这说明oldCap <= 0 oldThr <= 0,
* 此时hashMap处于使用HashMap()构造函数初始化的状态,Cap为0,thrrshold为0
*/
else
{ // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 如果新阈值为 0 , 创建新阈值
if (newThr == 0)
{
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings ({"rawtypes", "unchecked"})
Node<K, V>[] newTab = (Node<K, V>[])new Node[newCap];
table = newTab;
if (oldTab != null)
{
for (int j = 0; j < oldCap; ++j)
{
Node<K, V> e;
if ((e = oldTab[j]) != null)
{
// 释放资源
oldTab[j] = null;
// 若是单节点直接在newTab中重新定位
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
// 若节点是TreeNode节点,要进行 红黑树的 rehash操作
else if (e instanceof TreeNode)
((TreeNode<K, V>)e).split(this, newTab, j, oldCap);
// 若节点是链表,进行链表的rehash操作
else
{ // preserve order
Node<K, V> loHead = null, loTail = null;
Node<K, V> hiHead = null, hiTail = null;
Node<K, V> next;
do
{
next = e.next;
// 将同一桶中的元素根据(e.hash & oldCap)是否为0进行分割
// 根据算法 e.hash & oldCap 判断节点位置rehash 后是否发生改变
// 最高位==0,这是索引不变的链表。
if ((e.hash & oldCap) == 0)
{
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
// 最高位==1 (这是索引发生改变的链表)
else
{
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null)
{
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null)
{
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
/**
* Replaces all linked nodes in bin at index for given hash unless table is
* too small, in which case resizes instead.
*/
final void treeifyBin(Node<K, V>[] tab, int hash)
{
int n, index;
Node<K, V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null)
{
TreeNode<K, V> hd = null, tl = null;
do
{
TreeNode<K, V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else
{
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
public void putAll(Map<? extends K, ? extends V> m)
{
putMapEntries(m, true);
}
public V remove(Object key)
{
Node<K, V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value;
}
/*
* 移除和添加类似
*/
final Node<K, V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable)
{
Node<K, V>[] tab;
Node<K, V> p;
int n, index;
if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null)
{
Node<K, V> node = null, e;
K k;
V v;
if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null)
{
if (p instanceof TreeNode)
node = ((TreeNode<K, V>)p).getTreeNode(hash, key);
else
{
do
{
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
{
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v))))
{
if (node instanceof TreeNode)
((TreeNode<K, V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
public void clear()
{
Node<K, V>[] tab;
modCount++;
if ((tab = table) != null && size > 0)
{
size = 0;
for (int i = 0; i < tab.length; ++i)
tab[i] = null;
}
}
public boolean containsValue(Object value)
{
Node<K, V>[] tab;
V v;
if ((tab = table) != null && size > 0)
{
// 遍历table
for (int i = 0; i < tab.length; ++i)
{
// 遍历节点
for (Node<K, V> e = tab[i]; e != null; e = e.next)
{
if ((v = e.value) == value || (value != null && value.equals(v)))
return true;
}
}
}
return false;
}
public Set<K> keySet()
{
Set<K> ks = keySet;
if (ks == null)
{
ks = new KeySet();
keySet = ks;
}
return ks;
}
final class KeySet extends AbstractSet<K>
{
public final int size()
{
return size;
}
public final void clear()
{
HashMap.this.clear();
}
public final Iterator<K> iterator()
{
return new KeyIterator();
}
public final boolean contains(Object o)
{
return containsKey(o);
}
public final boolean remove(Object key)
{
return removeNode(hash(key), key, null, false, true) != null;
}
public final Spliterator<K> spliterator()
{
return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super K> action)
{
Node<K, V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null)
{
int mc = modCount;
for (int i = 0; i < tab.length; ++i)
{
for (Node<K, V> e = tab[i]; e != null; e = e.next)
action.accept(e.key);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}
public Collection<V> values()
{
Collection<V> vs = values;
if (vs == null)
{
vs = new Values();
values = vs;
}
return vs;
}
final class Values extends AbstractCollection<V>
{
public final int size()
{
return size;
}
public final void clear()
{
HashMap.this.clear();
}
public final Iterator<V> iterator()
{
return new ValueIterator();
}
public final boolean contains(Object o)
{
return containsValue(o);
}
public final Spliterator<V> spliterator()
{
return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super V> action)
{
Node<K, V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null)
{
int mc = modCount;
for (int i = 0; i < tab.length; ++i)
{
for (Node<K, V> e = tab[i]; e != null; e = e.next)
action.accept(e.value);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}
public Set<Map.Entry<K, V>> entrySet()
{
Set<Map.Entry<K, V>> es;
return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
}
final class EntrySet extends AbstractSet<Map.Entry<K, V>>
{
public final int size()
{
return size;
}
public final void clear()
{
HashMap.this.clear();
}
public final Iterator<Map.Entry<K, V>> iterator()
{
return new EntryIterator();
}
public final boolean contains(Object o)
{
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?, ?> e = (Map.Entry<?, ?>)o;
Object key = e.getKey();
Node<K, V> candidate = getNode(hash(key), key);
return candidate != null && candidate.equals(e);
}
public final boolean remove(Object o)
{
if (o instanceof Map.Entry)
{
Map.Entry<?, ?> e = (Map.Entry<?, ?>)o;
Object key = e.getKey();
Object value = e.getValue();
return removeNode(hash(key), key, value, true, true) != null;
}
return false;
}
public final Spliterator<Map.Entry<K, V>> spliterator()
{
return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super Map.Entry<K, V>> action)
{
Node<K, V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null)
{
int mc = modCount;
for (int i = 0; i < tab.length; ++i)
{
for (Node<K, V> e = tab[i]; e != null; e = e.next)
action.accept(e);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}
// Overrides of JDK8 Map extension methods
@Override
public V getOrDefault(Object key, V defaultValue)
{
Node<K, V> e;
return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
}
@Override
public V putIfAbsent(K key, V value)
{
return putVal(hash(key), key, value, true, true);
}
@Override
public boolean remove(Object key, Object value)
{
return removeNode(hash(key), key, value, true, true) != null;
}
@Override
public boolean replace(K key, V oldValue, V newValue)
{
Node<K, V> e;
V v;
if ((e = getNode(hash(key), key)) != null && ((v = e.value) == oldValue || (v != null && v.equals(oldValue))))
{
e.value = newValue;
afterNodeAccess(e);
return true;
}
return false;
}
@Override
public V replace(K key, V value)
{
Node<K, V> e;
if ((e = getNode(hash(key), key)) != null)
{
V oldValue = e.value;
e.value = value;
afterNodeAccess(e);
return oldValue;
}
return null;
}
@Override
public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction)
{
if (mappingFunction == null)
throw new NullPointerException();
int hash = hash(key);
Node<K, V>[] tab;
Node<K, V> first;
int n, i;
int binCount = 0;
TreeNode<K, V> t = null;
Node<K, V> old = null;
if (size > threshold || (tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((first = tab[i = (n - 1) & hash]) != null)
{
// 红黑树
if (first instanceof TreeNode)
old = (t = (TreeNode<K, V>)first).getTreeNode(hash, key);
else
{
// 链表
Node<K, V> e = first;
K k;
do
{
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
{
old = e;
break;
}
++binCount;
} while ((e = e.next) != null);
}
V oldValue;
if (old != null && (oldValue = old.value) != null)
{
afterNodeAccess(old);
return oldValue;
}
}
// 计算
V v = mappingFunction.apply(key);
if (v == null)
{
return null;
}
// 链表
else if (old != null)
{
old.value = v;
afterNodeAccess(old);
return v;
}
// 树
else if (t != null)
t.putTreeVal(this, tab, hash, key, v);
else
{
tab[i] = newNode(hash, key, v, first);
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash);
}
++modCount;
++size;
afterNodeInsertion(true);
return v;
}
public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction)
{
if (remappingFunction == null)
throw new NullPointerException();
Node<K, V> e;
V oldValue;
int hash = hash(key);
if ((e = getNode(hash, key)) != null && (oldValue = e.value) != null)
{
V v = remappingFunction.apply(key, oldValue);
if (v != null)
{
e.value = v;
afterNodeAccess(e);
return v;
}
// =null直接移除?
else
removeNode(hash, key, null, false, true);
}
return null;
}
@Override
public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction)
{
if (remappingFunction == null)
throw new NullPointerException();
int hash = hash(key);
Node<K, V>[] tab;
Node<K, V> first;
int n, i;
int binCount = 0;
TreeNode<K, V> t = null;
Node<K, V> old = null;
if (size > threshold || (tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((first = tab[i = (n - 1) & hash]) != null)
{
if (first instanceof TreeNode)
old = (t = (TreeNode<K, V>)first).getTreeNode(hash, key);
else
{
Node<K, V> e = first;
K k;
do
{
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
{
old = e;
break;
}
++binCount;
} while ((e = e.next) != null);
}
}