Skip to content

Commit

Permalink
modified: README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
Akshay Sridhar authored and Akshay Sridhar committed Aug 11, 2023
1 parent 209f805 commit 937b5f1
Showing 1 changed file with 54 additions and 28 deletions.
82 changes: 54 additions & 28 deletions experiments/AMIP/modular/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,60 +4,81 @@
The momentum equations are in the advective form, and tracers in the consevative form, namely:

- Density:
$$ \frac{\partial \rho}{\partial t} + \nabla \cdot ({\rho \vec{u}})= 0 $$

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot ({\rho \vec{u}})= 0
$$

- Momentum (flux form):
$$ \frac{\partial \vec{u_h}}{\partial t} + \vec{u} \cdot \nabla \vec{u_h} = - \frac{1}{\rho}\nabla_h p
+ \frac{\partial}{\partial z} K_v \frac{\partial}{\partial z} \vec{u_h}

$$
$$ \frac{\partial w}{\partial t} + \vec{u} \cdot \nabla w=
- \frac{1}{\rho}\frac{\partial p}{\partial z}
- \nabla_z \Phi
+ \frac{\partial}{\partial z} K_v \frac{\partial}{\partial z} w
\frac{\partial \vec{u_h}}{\partial t} + \vec{u} \cdot \nabla \vec{u_h} = - \frac{1}{\rho}\nabla_h p + \frac{\partial}{\partial z} K_v \frac{\partial}{\partial z} \vec{u_h}
$$

$$
\frac{\partial w}{\partial t} + \vec{u} \cdot \nabla w = - \frac{1}{\rho}\frac{\partial p}{\partial z} - \nabla_z \Phi + \frac{\partial}{\partial z} K_v \frac{\partial}{\partial z} w
$$

- Total energy:
$$ \frac{\partial \rho e_{tot}}{\partial t} + \nabla \cdot (\rho h_{tot} \vec{u}) = \frac{\partial}{\partial z} K_v \frac{\partial}{\partial z} h_{tot}

$$
\frac{\partial \rho e_{tot}}{\partial t} + \nabla \cdot (\rho h_{tot} \vec{u}) = \frac{\partial}{\partial z} K_v \frac{\partial}{\partial z} h_{tot}
$$

where the total specific enthalpy and total specific energy are
$$ h_{tot} = e_{tot} + \frac{p}{\rho} \,\,\,\,\,\,\,\, \,\,\,\,\,\,\,\, e_{tot} = c_v T + \Phi + \frac{1}{2}\vec{u}^2

$$
h_{tot} = e_{tot} + \frac{p}{\rho}
$$

$$
e_{tot} = c_v T + \Phi + \frac{1}{2}\vec{u}^2
$$

(note that $h_{tot} \neq h = c_vT + p/\rho = c_p T$, the specific enthalpy in the thermodynamic sense), $\Phi = gz$ is the geopotential,
$u_h$ is the horizontal velocity vector, $w$ the vertical velocity, $\rho$ the density, $p$ pressure, $K_v$ the vertical diffusivity (assumed constant here).

## Boundary conditions (BCs)
- We implement BCs similarly to other climate models.
- First-order fluxes (i.e., advective fluxes) are always set to zero, corresponding to the *free-slip* and *impenetrable* BC, where:
$$
w = 0 \,\,\,\,\,\,\, \partial_t w = 0 \,\,\,\,\,\,\, \nabla \times\vec{u_h}=0 \,\,\,\,\,\,\, \nabla \cdot \vec{\rho u_h}=0 \,\,\,\,\,\,\, \nabla \cdot \rho h_{tot} \vec{u_h}=0
$$

$$w = 0$$

$$\partial_t w = 0$$

$$\nabla \times\vec{u_h}=0 $$

$$\nabla \cdot \vec{\rho u_h}=0 $$

$$\nabla \cdot \rho h_{tot} \vec{u_h}=0$$

- Second-order fluxes (i.e., diffusive fluxes)
- `No Flux`: By default we have *impenetrable* or *insulating* BCs (no second-order fluxes) at all boundaries.
- `Bulk Formula`: Applied to tracers (e.g., temperature and moisture), this imposes a boundary fluxes (e.g., sensible and latent heat) calculated using the bulk aerodynamic formulae using prescribed surface values of ($T_{sfc}$ and $q_{sfc}^{sat}$). At the surface, the bulk sensible heat flux formula for total enthalpy essentially replaces the above:
$$ (K_v \rho \partial_z h_{tot})_{sfc}$$

$$(K_v \rho \partial_z h_{tot})_{sfc}$$

For **total energy**, we have two choices:

- 1. enthalpy flux:
$$ (K_v \rho \partial_z h_{tot})_{sfc} \rightarrow
\hat{n} \cdot \rho C_H ||u||^{1} (h^1- h_{sfc})
= F_S
$$

$$(K_v \rho \partial_z h_{tot})_{sfc} \rightarrow \hat{n} \cdot \rho C_H ||u||^{1} (h^1- h_{sfc}) = F_S$$

- 2. sensible (and latent) heat flux. The sensible heat flux is:
$$ (K_v \rho \partial_z h_{tot})_{sfc} \rightarrow
\hat{n} \cdot C_H c_{pd} ρ^{1} ||u||^{1} (T^{1} - T_{sfc})
+ \hat{n} \cdot C_H ρ^{1} ||u||^{1} (\Phi^{1} - \Phi_{sfc})
= F_S

$$
(K_v \rho \partial_{z} h_{tot})_{sfc} \rightarrow \hat{n} \cdot C_H c_{pd} ρ^{1} ||u||^{1} (T^{1} - T_{sfc}) + \hat{n} \cdot C_H ρ^{1} ||u||^{1} (\Phi^{1} - \Phi_{sfc}) = F_S
$$

where $^{1}$ corresponds to the lowest model level, $C_H$ is the dimensionless thermal transfer coefficient, $c_{pd}$ is the specific heat capacity for dry air $||u||$ the wind speed. This is the *bulk turbulent sensible heat flux* parameterization, and $F_S$ is positive when atmosphere receives energy from the surface.
The contribution of the kinetic energy is usually O(1e4) smaller and is neglected, but it can be added to F_S as:
$$
F_{S_{tot}} = F_S + \hat{n} \cdot C_D ρ^{1} ||u||^{1} (\vec{u_h}^{1})^2
$$

$$F_{S_{tot}} = F_S + \hat{n} \cdot C_D ρ^{1} ||u||^{1} (\vec{u_h}^{1})^2$$

- `Drag Law`: essentially the bulk formula for momentum
$$ \frac{\partial}{\partial z} K_v \frac{\partial}{\partial z} \vec{u_h} \rightarrow
\hat{n} \cdot C_D ρ^{1} ||u||^{1} \vec{u_h}^{1}
= F_M
$$

$$\frac{\partial}{\partial z} K_v \frac{\partial}{\partial z} \vec{u_h} \rightarrow \hat{n} \cdot C_D ρ^{1} ||u||^{1} \vec{u_h}^{1} = F_M$$

- `Coupled Bulk Formula`: same as `Bulk Formula`, but surface quantities (e.g. $T_{sfc}$) are passed from the state of the neighboring model.

- The diffusive fluxes are applied via the `vertical_diffusion` ClimaAtmos model sub-component. To apply boundary fluxes without diffusion in the atmospheric interior, the viscosity coefficient needs to be set to zero: $ν = FT(0)$.
Expand All @@ -83,6 +104,7 @@ https://climate.ucdavis.edu/pubs/UMJS2013QJRMS.pdf

# Heat Slab
The slab solves for temperature in a single layer, whose tendency is the accumulated fluxes divided by the coupling timestep plus a parameterisation of the internal processes, $G$.

$$
\rho c h_s \, \partial_t T_{sfc} = - F_{integ} / \Delta t_{coupler}
$$
Expand Down Expand Up @@ -126,13 +148,17 @@ $$

# Prescribed SST and Sea Ice
- We simply prescribe SSTs from a file as `T_sfc`. As for sea ice, we will follow GFDL's [AMIP setup](https://pcmdi.llnl.gov/mips/amip/home/Documentation/20gfdl.html#RTFToC31) and use prescribed sea ice concentrations and a constant ice thickness, $h_{i} = 2m$ ice thickness, while solving for $T_{sfc}$:

$$
\frac{dT_{sfc}}{dt} = - \frac{h_i(F_{atm} - F_{conductive})}{k_i}
$$

where

$$
F_{conductive} = \frac{k_i (T_{base} - {T_{sfc}})}{h_{i}}
$$

with the thermal conductivity of ice, $k_i = 2$ W m$^{-2}$ K$^{-1}$, and $T_{base} = 273.16$ K. For now we use an Euler timestepper (and use $T_{sfc}$ of the previous timestep), though this may be solved implicitly in the future.

## Data source
Expand Down

0 comments on commit 937b5f1

Please sign in to comment.