forked from etcd-io/etcd
-
Notifications
You must be signed in to change notification settings - Fork 3
/
metrics.go
653 lines (591 loc) · 21.1 KB
/
metrics.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
// Copyright 2014 The Cockroach Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the License. See the AUTHORS file
// for names of contributors.
//
// Author: Tyler Neely (t@jujit.su)
// IMPORTANT: only subscribe to the metric stream
// using buffered channels that are regularly
// flushed, as reaper will NOT block while trying
// to send metrics to a subscriber, and will ignore
// a subscriber if they fail to clear their channel
// 3 times in a row!
package loghisto
import (
"errors"
"fmt"
"math"
"runtime"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/coreos/etcd/Godeps/_workspace/src/github.com/golang/glog"
)
const (
// precision effects the bucketing used during histogram value compression.
precision = 100
)
// ProcessedMetricSet contains human-readable metrics that may also be
// suitable for storage in time-series databases.
type ProcessedMetricSet struct {
Time time.Time
Metrics map[string]float64
}
// RawMetricSet contains metrics in a form that supports generation of
// percentiles and other rich statistics.
type RawMetricSet struct {
Time time.Time
Counters map[string]uint64
Rates map[string]uint64
Histograms map[string]map[int16]*uint64
Gauges map[string]float64
}
// TimerToken facilitates concurrent timings of durations of the same label.
type TimerToken struct {
Name string
Start time.Time
MetricSystem *MetricSystem
}
// proportion is a compact value with a corresponding count of
// occurrences in this interval.
type proportion struct {
Value float64
Count uint64
}
// proportionArray is a sortable collection of proportion types.
type proportionArray []proportion
// MetricSystem facilitates the collection and distribution of metrics.
type MetricSystem struct {
// percentiles is a mapping from labels to desired percentiles to be
// calculated by the MetricSystem
percentiles map[string]float64
// interval is the duration between collections and broadcasts of metrics
// to subscribers.
interval time.Duration
// subscribeToRawMetrics allows subscription to a RawMetricSet generated
// by reaper at the end of each interval on a sent channel.
subscribeToRawMetrics chan chan *RawMetricSet
// unsubscribeFromRawMetrics allows subscribers to unsubscribe from
// receiving a RawMetricSet on the sent channel.
unsubscribeFromRawMetrics chan chan *RawMetricSet
// subscribeToProcessedMetrics allows subscription to a ProcessedMetricSet
// generated by reaper at the end of each interval on a sent channel.
subscribeToProcessedMetrics chan chan *ProcessedMetricSet
// unsubscribeFromProcessedMetrics allows subscribers to unsubscribe from
// receiving a ProcessedMetricSet on the sent channel.
unsubscribeFromProcessedMetrics chan chan *ProcessedMetricSet
// rawSubscribers stores current subscribers to RawMetrics
rawSubscribers map[chan *RawMetricSet]struct{}
// rawBadSubscribers tracks misbehaving subscribers who do not clear their
// subscription channels regularly.
rawBadSubscribers map[chan *RawMetricSet]int
// processedSubscribers stores current subscribers to ProcessedMetrics
processedSubscribers map[chan *ProcessedMetricSet]struct{}
// processedBadSubscribers tracks misbehaving subscribers who do not clear
// their subscription channels regularly.
processedBadSubscribers map[chan *ProcessedMetricSet]int
// subscribersMu controls access to subscription structures
subscribersMu sync.RWMutex
// counterStore maintains the total counts of counters.
counterStore map[string]*uint64
counterStoreMu sync.RWMutex
// counterCache aggregates new Counters until they are collected by reaper().
counterCache map[string]*uint64
// counterMu controls access to counterCache.
counterMu sync.RWMutex
// histogramCache aggregates Histograms until they are collected by reaper().
histogramCache map[string]map[int16]*uint64
// histogramMu controls access to histogramCache.
histogramMu sync.RWMutex
// histogramCountStore keeps track of aggregate counts and sums for aggregate
// mean calculation.
histogramCountStore map[string]*uint64
// histogramCountMu controls access to the histogramCountStore.
histogramCountMu sync.RWMutex
// gaugeFuncs maps metrics to functions used for calculating their value
gaugeFuncs map[string]func() float64
// gaugeFuncsMu controls access to the gaugeFuncs map.
gaugeFuncsMu sync.Mutex
// Has reaper() been started?
reaping bool
// Close this to bring down this MetricSystem
shutdownChan chan struct{}
}
// Metrics is the default metric system, which collects and broadcasts metrics
// to subscribers once every 60 seconds. Also includes default system stats.
var Metrics = NewMetricSystem(60*time.Second, true)
// NewMetricSystem returns a new metric system that collects and broadcasts
// metrics after each interval.
func NewMetricSystem(interval time.Duration, sysStats bool) *MetricSystem {
ms := &MetricSystem{
percentiles: map[string]float64{
"%s_min": 0,
"%s_50": .5,
"%s_75": .75,
"%s_90": .9,
"%s_95": .95,
"%s_99": .99,
"%s_99.9": .999,
"%s_99.99": .9999,
"%s_max": 1,
},
interval: interval,
subscribeToRawMetrics: make(chan chan *RawMetricSet, 64),
unsubscribeFromRawMetrics: make(chan chan *RawMetricSet, 64),
subscribeToProcessedMetrics: make(chan chan *ProcessedMetricSet, 64),
unsubscribeFromProcessedMetrics: make(chan chan *ProcessedMetricSet, 64),
rawSubscribers: make(map[chan *RawMetricSet]struct{}),
rawBadSubscribers: make(map[chan *RawMetricSet]int),
processedSubscribers: make(map[chan *ProcessedMetricSet]struct{}),
processedBadSubscribers: make(map[chan *ProcessedMetricSet]int),
counterStore: make(map[string]*uint64),
counterCache: make(map[string]*uint64),
histogramCache: make(map[string]map[int16]*uint64),
histogramCountStore: make(map[string]*uint64),
gaugeFuncs: make(map[string]func() float64),
shutdownChan: make(chan struct{}),
}
if sysStats {
ms.gaugeFuncsMu.Lock()
ms.gaugeFuncs["sys.Alloc"] = func() float64 {
memStats := new(runtime.MemStats)
runtime.ReadMemStats(memStats)
return float64(memStats.Alloc)
}
ms.gaugeFuncs["sys.NumGC"] = func() float64 {
memStats := new(runtime.MemStats)
runtime.ReadMemStats(memStats)
return float64(memStats.NumGC)
}
ms.gaugeFuncs["sys.PauseTotalNs"] = func() float64 {
memStats := new(runtime.MemStats)
runtime.ReadMemStats(memStats)
return float64(memStats.PauseTotalNs)
}
ms.gaugeFuncs["sys.NumGoroutine"] = func() float64 {
return float64(runtime.NumGoroutine())
}
ms.gaugeFuncsMu.Unlock()
}
return ms
}
// SpecifyPercentiles allows users to override the default collected
// and reported percentiles.
func (ms *MetricSystem) SpecifyPercentiles(percentiles map[string]float64) {
ms.percentiles = percentiles
}
// SubscribeToRawMetrics registers a channel to receive RawMetricSets
// periodically generated by reaper at each interval.
func (ms *MetricSystem) SubscribeToRawMetrics(metricStream chan *RawMetricSet) {
ms.subscribeToRawMetrics <- metricStream
}
// UnsubscribeFromRawMetrics registers a channel to receive RawMetricSets
// periodically generated by reaper at each interval.
func (ms *MetricSystem) UnsubscribeFromRawMetrics(
metricStream chan *RawMetricSet) {
ms.unsubscribeFromRawMetrics <- metricStream
}
// SubscribeToProcessedMetrics registers a channel to receive
// ProcessedMetricSets periodically generated by reaper at each interval.
func (ms *MetricSystem) SubscribeToProcessedMetrics(
metricStream chan *ProcessedMetricSet) {
ms.subscribeToProcessedMetrics <- metricStream
}
// UnsubscribeFromProcessedMetrics registers a channel to receive
// ProcessedMetricSets periodically generated by reaper at each interval.
func (ms *MetricSystem) UnsubscribeFromProcessedMetrics(
metricStream chan *ProcessedMetricSet) {
ms.unsubscribeFromProcessedMetrics <- metricStream
}
// StartTimer begins a timer and returns a token which is required for halting
// the timer. This allows for concurrent timings under the same name.
func (ms *MetricSystem) StartTimer(name string) TimerToken {
return TimerToken{
Name: name,
Start: time.Now(),
MetricSystem: ms,
}
}
// Stop stops a timer given by StartTimer, submits a Histogram of its duration
// in nanoseconds, and returns its duration in nanoseconds.
func (tt *TimerToken) Stop() time.Duration {
duration := time.Since(tt.Start)
tt.MetricSystem.Histogram(tt.Name, float64(duration.Nanoseconds()))
return duration
}
// Counter is used for recording a running count of the total occurrences of
// a particular event. A rate is also exported for the amount that a counter
// has increased during an interval of this MetricSystem.
func (ms *MetricSystem) Counter(name string, amount uint64) {
ms.counterMu.RLock()
_, exists := ms.counterCache[name]
// perform lock promotion when we need more control
if exists {
atomic.AddUint64(ms.counterCache[name], amount)
ms.counterMu.RUnlock()
} else {
ms.counterMu.RUnlock()
ms.counterMu.Lock()
_, syncExists := ms.counterCache[name]
if !syncExists {
var z uint64
ms.counterCache[name] = &z
}
atomic.AddUint64(ms.counterCache[name], amount)
ms.counterMu.Unlock()
}
}
// Histogram is used for generating rich metrics, such as percentiles, from
// periodically occurring continuous values.
func (ms *MetricSystem) Histogram(name string, value float64) {
compressedValue := compress(value)
ms.histogramMu.RLock()
_, present := ms.histogramCache[name][compressedValue]
if present {
atomic.AddUint64(ms.histogramCache[name][compressedValue], 1)
ms.histogramMu.RUnlock()
} else {
ms.histogramMu.RUnlock()
ms.histogramMu.Lock()
_, syncPresent := ms.histogramCache[name][compressedValue]
if !syncPresent {
var z uint64
_, mapPresent := ms.histogramCache[name]
if !mapPresent {
ms.histogramCache[name] = make(map[int16]*uint64)
}
ms.histogramCache[name][compressedValue] = &z
}
atomic.AddUint64(ms.histogramCache[name][compressedValue], 1)
ms.histogramMu.Unlock()
}
}
// RegisterGaugeFunc registers a function to be called at each interval
// whose return value will be used to populate the <name> metric.
func (ms *MetricSystem) RegisterGaugeFunc(name string, f func() float64) {
ms.gaugeFuncsMu.Lock()
ms.gaugeFuncs[name] = f
ms.gaugeFuncsMu.Unlock()
}
// DeregisterGaugeFunc deregisters a function for the <name> metric.
func (ms *MetricSystem) DeregisterGaugeFunc(name string) {
ms.gaugeFuncsMu.Lock()
delete(ms.gaugeFuncs, name)
ms.gaugeFuncsMu.Unlock()
}
// compress takes a float64 and lossily shrinks it to an int16 to facilitate
// bucketing of histogram values, staying within 1% of the true value. This
// fails for large values of 1e142 and above, and is inaccurate for values
// closer to 0 than +/- 0.51 or +/- math.Inf.
func compress(value float64) int16 {
i := int16(precision*math.Log(1.0+math.Abs(value)) + 0.5)
if value < 0 {
return -1 * i
}
return i
}
// decompress takes a lossily shrunk int16 and returns a float64 within 1% of
// the original float64 passed to compress.
func decompress(compressedValue int16) float64 {
f := math.Exp(math.Abs(float64(compressedValue))/precision) - 1.0
if compressedValue < 0 {
return -1.0 * f
}
return f
}
// processHistograms derives rich metrics from histograms, currently
// percentiles, sum, count, and mean.
func (ms *MetricSystem) processHistograms(name string,
valuesToCounts map[int16]*uint64) map[string]float64 {
output := make(map[string]float64)
totalSum := float64(0)
totalCount := uint64(0)
proportions := make([]proportion, 0, len(valuesToCounts))
for compressedValue, count := range valuesToCounts {
value := decompress(compressedValue)
totalSum += value * float64(*count)
totalCount += *count
proportions = append(proportions, proportion{Value: value, Count: *count})
}
sumName := fmt.Sprintf("%s_sum", name)
countName := fmt.Sprintf("%s_count", name)
avgName := fmt.Sprintf("%s_avg", name)
// increment interval sum and count
output[countName] = float64(totalCount)
output[sumName] = totalSum
output[avgName] = totalSum / float64(totalCount)
// increment aggregate sum and count
ms.histogramCountMu.RLock()
_, present := ms.histogramCountStore[sumName]
if !present {
ms.histogramCountMu.RUnlock()
ms.histogramCountMu.Lock()
_, syncPresent := ms.histogramCountStore[sumName]
if !syncPresent {
var x uint64
ms.histogramCountStore[sumName] = &x
var z uint64
ms.histogramCountStore[countName] = &z
}
ms.histogramCountMu.Unlock()
ms.histogramCountMu.RLock()
}
atomic.AddUint64(ms.histogramCountStore[sumName], uint64(totalSum))
atomic.AddUint64(ms.histogramCountStore[countName], totalCount)
ms.histogramCountMu.RUnlock()
for label, p := range ms.percentiles {
value, err := percentile(totalCount, proportions, p)
if err != nil {
glog.Errorf("unable to calculate percentile: %s", err)
} else {
output[fmt.Sprintf(label, name)] = value
}
}
return output
}
// These next 3 methods are for the implementation of sort.Interface
func (s proportionArray) Len() int {
return len(s)
}
func (s proportionArray) Less(i, j int) bool {
return s[i].Value < s[j].Value
}
func (s proportionArray) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
// percentile calculates a percentile represented as a float64 between 0 and 1
// inclusive from a proportionArray. totalCount is the sum of all counts of
// elements in the proportionArray.
func percentile(totalCount uint64, proportions proportionArray,
percentile float64) (float64, error) {
//TODO(tyler) handle multiple percentiles at once for efficiency
sort.Sort(proportions)
sofar := uint64(0)
for _, proportion := range proportions {
sofar += proportion.Count
if float64(sofar)/float64(totalCount) >= percentile {
return proportion.Value, nil
}
}
return 0, errors.New("Invalid percentile. Should be between 0 and 1.")
}
func (ms *MetricSystem) collectRawMetrics() *RawMetricSet {
normalizedInterval := time.Unix(0, time.Now().UnixNano()/
ms.interval.Nanoseconds()*
ms.interval.Nanoseconds())
ms.counterMu.Lock()
freshCounters := ms.counterCache
ms.counterCache = make(map[string]*uint64)
ms.counterMu.Unlock()
rates := make(map[string]uint64)
for name, count := range freshCounters {
rates[name] = *count
}
counters := make(map[string]uint64)
ms.counterStoreMu.RLock()
// update counters
for name, count := range freshCounters {
_, exists := ms.counterStore[name]
// only take a write lock when it's a totally new counter
if !exists {
ms.counterStoreMu.RUnlock()
ms.counterStoreMu.Lock()
_, syncExists := ms.counterStore[name]
if !syncExists {
var z uint64
ms.counterStore[name] = &z
}
ms.counterStoreMu.Unlock()
ms.counterStoreMu.RLock()
}
atomic.AddUint64(ms.counterStore[name], *count)
}
// copy counters for export
for name, count := range ms.counterStore {
counters[name] = *count
}
ms.counterStoreMu.RUnlock()
ms.histogramMu.Lock()
histograms := ms.histogramCache
ms.histogramCache = make(map[string]map[int16]*uint64)
ms.histogramMu.Unlock()
ms.gaugeFuncsMu.Lock()
gauges := make(map[string]float64)
for name, f := range ms.gaugeFuncs {
gauges[name] = f()
}
ms.gaugeFuncsMu.Unlock()
return &RawMetricSet{
Time: normalizedInterval,
Counters: counters,
Rates: rates,
Histograms: histograms,
Gauges: gauges,
}
}
// processMetrics (potentially slowly) creates human consumable metrics from a
// RawMetricSet, deriving rich statistics from histograms such as percentiles.
func (ms *MetricSystem) processMetrics(
rawMetrics *RawMetricSet) *ProcessedMetricSet {
metrics := make(map[string]float64)
for name, count := range rawMetrics.Counters {
metrics[name] = float64(count)
}
for name, count := range rawMetrics.Rates {
metrics[fmt.Sprintf("%s_rate", name)] = float64(count)
}
for name, valuesToCounts := range rawMetrics.Histograms {
for histoName, histoValue := range ms.processHistograms(name, valuesToCounts) {
metrics[histoName] = histoValue
}
}
for name, value := range rawMetrics.Gauges {
metrics[name] = value
}
return &ProcessedMetricSet{Time: rawMetrics.Time, Metrics: metrics}
}
func (ms *MetricSystem) updateSubscribers() {
ms.subscribersMu.Lock()
defer ms.subscribersMu.Unlock()
for {
select {
case subscriber := <-ms.subscribeToRawMetrics:
ms.rawSubscribers[subscriber] = struct{}{}
case unsubscriber := <-ms.unsubscribeFromRawMetrics:
delete(ms.rawSubscribers, unsubscriber)
case subscriber := <-ms.subscribeToProcessedMetrics:
ms.processedSubscribers[subscriber] = struct{}{}
case unsubscriber := <-ms.unsubscribeFromProcessedMetrics:
delete(ms.processedSubscribers, unsubscriber)
default: // no changes in subscribers
return
}
}
}
// reaper wakes up every <interval> seconds,
// collects and processes metrics, and pushes
// them to the corresponding subscribing channels.
func (ms *MetricSystem) reaper() {
ms.reaping = true
// create goroutine pool to handle multiple processing tasks at once
processChan := make(chan func(), 16)
for i := 0; i < int(math.Max(float64(runtime.NumCPU()/4), 4)); i++ {
go func() {
for {
c, ok := <-processChan
if !ok {
return
}
c()
}
}()
}
// begin reaper main loop
for {
// sleep until the next interval, or die if shutdownChan is closed
tts := ms.interval.Nanoseconds() -
(time.Now().UnixNano() % ms.interval.Nanoseconds())
select {
case <-time.After(time.Duration(tts)):
case <-ms.shutdownChan:
ms.reaping = false
close(processChan)
return
}
rawMetrics := ms.collectRawMetrics()
ms.updateSubscribers()
// broadcast raw metrics
for subscriber := range ms.rawSubscribers {
// new subscribers get all counters, otherwise just the new diffs
select {
case subscriber <- rawMetrics:
delete(ms.rawBadSubscribers, subscriber)
default:
ms.rawBadSubscribers[subscriber]++
glog.Error("a raw subscriber has allowed their channel to fill up. ",
"dropping their metrics on the floor rather than blocking.")
if ms.rawBadSubscribers[subscriber] >= 2 {
glog.Error("this raw subscriber has caused dropped metrics at ",
"least 3 times in a row. closing the channel.")
delete(ms.rawSubscribers, subscriber)
close(subscriber)
}
}
}
// Perform the rest in another goroutine since processing is not
// gauranteed to complete before the interval is up.
sendProcessed := func() {
// this is potentially expensive if there is a massive number of metrics
processedMetrics := ms.processMetrics(rawMetrics)
// add aggregate mean
for name := range rawMetrics.Histograms {
ms.histogramCountMu.RLock()
aggCountPtr, countPresent :=
ms.histogramCountStore[fmt.Sprintf("%s_count", name)]
aggCount := atomic.LoadUint64(aggCountPtr)
aggSumPtr, sumPresent :=
ms.histogramCountStore[fmt.Sprintf("%s_sum", name)]
aggSum := atomic.LoadUint64(aggSumPtr)
ms.histogramCountMu.RUnlock()
if countPresent && sumPresent && aggCount > 0 {
processedMetrics.Metrics[fmt.Sprintf("%s_agg_avg", name)] =
float64(aggSum / aggCount)
processedMetrics.Metrics[fmt.Sprintf("%s_agg_count", name)] =
float64(aggCount)
processedMetrics.Metrics[fmt.Sprintf("%s_agg_sum", name)] =
float64(aggSum)
}
}
// broadcast processed metrics
ms.subscribersMu.Lock()
for subscriber := range ms.processedSubscribers {
select {
case subscriber <- processedMetrics:
delete(ms.processedBadSubscribers, subscriber)
default:
ms.processedBadSubscribers[subscriber]++
glog.Error("a subscriber has allowed their channel to fill up. ",
"dropping their metrics on the floor rather than blocking.")
if ms.processedBadSubscribers[subscriber] >= 2 {
glog.Error("this subscriber has caused dropped metrics at ",
"least 3 times in a row. closing the channel.")
delete(ms.processedSubscribers, subscriber)
close(subscriber)
}
}
}
ms.subscribersMu.Unlock()
}
select {
case processChan <- sendProcessed:
default:
// processChan has filled up, this metric load is not sustainable
glog.Errorf("processing of metrics is taking longer than this node can "+
"handle. dropping this entire interval of %s metrics on the "+
"floor rather than blocking the reaper.", rawMetrics.Time)
}
} // end main reaper loop
}
// Start spawns a goroutine for merging metrics into caches from
// metric submitters, and a reaper goroutine that harvests metrics at the
// default interval of every 60 seconds.
func (ms *MetricSystem) Start() {
if !ms.reaping {
go ms.reaper()
}
}
// Stop shuts down a MetricSystem
func (ms *MetricSystem) Stop() {
close(ms.shutdownChan)
}