-
Notifications
You must be signed in to change notification settings - Fork 48
/
tx_list.go
564 lines (505 loc) · 18.5 KB
/
tx_list.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
// Copyright 2018 The CortexTheseus Authors
// This file is part of the CortexFoundation library.
//
// The CortexFoundation library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The CortexFoundation library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the CortexFoundation library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"container/heap"
"math"
"math/big"
"sort"
"github.com/CortexFoundation/CortexTheseus/common"
"github.com/CortexFoundation/CortexTheseus/core/types"
)
// nonceHeap is a heap.Interface implementation over 64bit unsigned integers for
// retrieving sorted transactions from the possibly gapped future queue.
type nonceHeap []uint64
func (h nonceHeap) Len() int { return len(h) }
func (h nonceHeap) Less(i, j int) bool { return h[i] < h[j] }
func (h nonceHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *nonceHeap) Push(x interface{}) {
*h = append(*h, x.(uint64))
}
func (h *nonceHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
// txSortedMap is a nonce->transaction hash map with a heap based index to allow
// iterating over the contents in a nonce-incrementing way.
type txSortedMap struct {
items map[uint64]*types.Transaction // Hash map storing the transaction data
index *nonceHeap // Heap of nonces of all the stored transactions (non-strict mode)
cache types.Transactions // Cache of the transactions already sorted
}
// newTxSortedMap creates a new nonce-sorted transaction map.
func newTxSortedMap() *txSortedMap {
return &txSortedMap{
items: make(map[uint64]*types.Transaction),
index: new(nonceHeap),
}
}
// Get retrieves the current transactions associated with the given nonce.
func (m *txSortedMap) Get(nonce uint64) *types.Transaction {
return m.items[nonce]
}
// Put inserts a new transaction into the map, also updating the map's nonce
// index. If a transaction already exists with the same nonce, it's overwritten.
func (m *txSortedMap) Put(tx *types.Transaction) {
nonce := tx.Nonce()
if m.items[nonce] == nil {
heap.Push(m.index, nonce)
}
m.items[nonce], m.cache = tx, nil
}
// Forward removes all transactions from the map with a nonce lower than the
// provided threshold. Every removed transaction is returned for any post-removal
// maintenance.
func (m *txSortedMap) Forward(threshold uint64) types.Transactions {
var removed types.Transactions
// Pop off heap items until the threshold is reached
for m.index.Len() > 0 && (*m.index)[0] < threshold {
nonce := heap.Pop(m.index).(uint64)
removed = append(removed, m.items[nonce])
delete(m.items, nonce)
}
// If we had a cached order, shift the front
if m.cache != nil {
m.cache = m.cache[len(removed):]
}
return removed
}
// Filter iterates over the list of transactions and removes all of them for which
// the specified function evaluates to true.
// Filter, as opposed to 'filter', re-initialises the heap after the operation is done.
// If you want to do several consecutive filterings, it's therefore better to first
// do a .filter(func1) followed by .Filter(func2) or reheap()
func (m *txSortedMap) Filter(filter func(*types.Transaction) bool) types.Transactions {
removed := m.filter(filter)
// If transactions were removed, the heap and cache are ruined
if len(removed) > 0 {
m.reheap()
}
return removed
}
func (m *txSortedMap) reheap() {
*m.index = make([]uint64, 0, len(m.items))
for nonce := range m.items {
*m.index = append(*m.index, nonce)
}
heap.Init(m.index)
m.cache = nil
}
// filter is identical to Filter, but **does not** regenerate the heap. This method
// should only be used if followed immediately by a call to Filter or reheap()
func (m *txSortedMap) filter(filter func(*types.Transaction) bool) types.Transactions {
var removed types.Transactions
// Collect all the transactions to filter out
for nonce, tx := range m.items {
if filter(tx) {
removed = append(removed, tx)
delete(m.items, nonce)
}
}
if len(removed) > 0 {
m.cache = nil
}
return removed
}
// Cap places a hard limit on the number of items, returning all transactions
// exceeding that limit.
func (m *txSortedMap) Cap(threshold int) types.Transactions {
// Short circuit if the number of items is under the limit
if len(m.items) <= threshold {
return nil
}
// Otherwise gather and drop the highest nonce'd transactions
var drops types.Transactions
sort.Sort(*m.index)
for size := len(m.items); size > threshold; size-- {
drops = append(drops, m.items[(*m.index)[size-1]])
delete(m.items, (*m.index)[size-1])
}
*m.index = (*m.index)[:threshold]
heap.Init(m.index)
// If we had a cache, shift the back
if m.cache != nil {
m.cache = m.cache[:len(m.cache)-len(drops)]
}
return drops
}
// Remove deletes a transaction from the maintained map, returning whether the
// transaction was found.
func (m *txSortedMap) Remove(nonce uint64) bool {
// Short circuit if no transaction is present
_, ok := m.items[nonce]
if !ok {
return false
}
// Otherwise delete the transaction and fix the heap index
for i := 0; i < m.index.Len(); i++ {
if (*m.index)[i] == nonce {
heap.Remove(m.index, i)
break
}
}
delete(m.items, nonce)
m.cache = nil
return true
}
// Ready retrieves a sequentially increasing list of transactions starting at the
// provided nonce that is ready for processing. The returned transactions will be
// removed from the list.
//
// Note, all transactions with nonces lower than start will also be returned to
// prevent getting into and invalid state. This is not something that should ever
// happen but better to be self correcting than failing!
func (m *txSortedMap) Ready(start uint64) types.Transactions {
// Short circuit if no transactions are available
if m.index.Len() == 0 || (*m.index)[0] > start {
return nil
}
// Otherwise start accumulating incremental transactions
var ready types.Transactions
for next := (*m.index)[0]; m.index.Len() > 0 && (*m.index)[0] == next; next++ {
ready = append(ready, m.items[next])
delete(m.items, next)
heap.Pop(m.index)
}
m.cache = nil
return ready
}
// Len returns the length of the transaction map.
func (m *txSortedMap) Len() int {
return len(m.items)
}
func (m *txSortedMap) flatten() types.Transactions {
// If the sorting was not cached yet, create and cache it
if m.cache == nil {
m.cache = make(types.Transactions, 0, len(m.items))
for _, tx := range m.items {
m.cache = append(m.cache, tx)
}
sort.Sort(types.TxByNonce(m.cache))
}
return m.cache
}
// Flatten creates a nonce-sorted slice of transactions based on the loosely
// sorted internal representation. The result of the sorting is cached in case
// it's requested again before any modifications are made to the contents.
func (m *txSortedMap) Flatten() types.Transactions {
// Copy the cache to prevent accidental modifications
cache := m.flatten()
txs := make(types.Transactions, len(cache))
copy(txs, cache)
return txs
}
// LastElement returns the last element of a flattened list, thus, the
// transaction with the highest nonce
func (m *txSortedMap) LastElement() *types.Transaction {
cache := m.flatten()
return cache[len(cache)-1]
}
// txList is a "list" of transactions belonging to an account, sorted by account
// nonce. The same type can be used both for storing contiguous transactions for
// the executable/pending queue; and for storing gapped transactions for the non-
// executable/future queue, with minor behavioral changes.
type txList struct {
strict bool // Whether nonces are strictly continuous or not
txs *txSortedMap // Heap indexed sorted hash map of the transactions
costcap *big.Int // Price of the highest costing transaction (reset only if exceeds balance)
gascap uint64 // Gas limit of the highest spending transaction (reset only if exceeds block limit)
}
// newTxList create a new transaction list for maintaining nonce-indexable fast,
// gapped, sortable transaction lists.
func newTxList(strict bool) *txList {
return &txList{
strict: strict,
txs: newTxSortedMap(),
costcap: new(big.Int),
}
}
// Overlaps returns whether the transaction specified has the same nonce as one
// already contained within the list.
func (l *txList) Overlaps(tx *types.Transaction) bool {
return l.txs.Get(tx.Nonce()) != nil
}
// Add tries to insert a new transaction into the list, returning whether the
// transaction was accepted, and if yes, any previous transaction it replaced.
//
// If the new transaction is accepted into the list, the lists' cost and gas
// thresholds are also potentially updated.
func (l *txList) Add(tx *types.Transaction, priceBump uint64) (bool, *types.Transaction) {
// If there's an older better transaction, abort
old := l.txs.Get(tx.Nonce())
if old != nil {
// threshold = oldGP * (100 + priceBump) / 100
a := big.NewInt(100 + int64(priceBump))
a = a.Mul(a, old.GasPrice())
b := big.NewInt(100)
threshold := a.Div(a, b)
// Have to ensure that the new gas price is higher than the old gas
// price as well as checking the percentage threshold to ensure that
// this is accurate for low (Wei-level) gas price replacements
if old.GasPriceCmp(tx) >= 0 || tx.GasPriceIntCmp(threshold) < 0 {
return false, nil
}
}
// Otherwise overwrite the old transaction with the current one
l.txs.Put(tx)
if cost := tx.Cost(); l.costcap.Cmp(cost) < 0 {
l.costcap = cost
}
if gas := tx.Gas(); l.gascap < gas {
l.gascap = gas
}
return true, old
}
// Forward removes all transactions from the list with a nonce lower than the
// provided threshold. Every removed transaction is returned for any post-removal
// maintenance.
func (l *txList) Forward(threshold uint64) types.Transactions {
return l.txs.Forward(threshold)
}
// Filter removes all transactions from the list with a cost or gas limit higher
// than the provided thresholds. Every removed transaction is returned for any
// post-removal maintenance. Strict-mode invalidated transactions are also
// returned.
//
// This method uses the cached costcap and gascap to quickly decide if there's even
// a point in calculating all the costs or if the balance covers all. If the threshold
// is lower than the costgas cap, the caps will be reset to a new high after removing
// the newly invalidated transactions.
func (l *txList) Filter(costLimit *big.Int, gasLimit uint64) (types.Transactions, types.Transactions) {
// If all transactions are below the threshold, short circuit
if l.costcap.Cmp(costLimit) <= 0 && l.gascap <= gasLimit {
return nil, nil
}
l.costcap = new(big.Int).Set(costLimit) // Lower the caps to the thresholds
l.gascap = gasLimit
// Filter out all the transactions above the account's funds
removed := l.txs.Filter(func(tx *types.Transaction) bool {
return tx.Gas() > gasLimit || tx.Cost().Cmp(costLimit) > 0
})
if len(removed) == 0 {
return nil, nil
}
var invalids types.Transactions
// If the list was strict, filter anything above the lowest nonce
if l.strict {
lowest := uint64(math.MaxUint64)
for _, tx := range removed {
if nonce := tx.Nonce(); lowest > nonce {
lowest = nonce
}
}
invalids = l.txs.filter(func(tx *types.Transaction) bool { return tx.Nonce() > lowest })
}
l.txs.reheap()
return removed, invalids
}
// Cap places a hard limit on the number of items, returning all transactions
// exceeding that limit.
func (l *txList) Cap(threshold int) types.Transactions {
return l.txs.Cap(threshold)
}
// Remove deletes a transaction from the maintained list, returning whether the
// transaction was found, and also returning any transaction invalidated due to
// the deletion (strict mode only).
func (l *txList) Remove(tx *types.Transaction) (bool, types.Transactions) {
// Remove the transaction from the set
nonce := tx.Nonce()
if removed := l.txs.Remove(nonce); !removed {
return false, nil
}
// In strict mode, filter out non-executable transactions
if l.strict {
return true, l.txs.Filter(func(tx *types.Transaction) bool { return tx.Nonce() > nonce })
}
return true, nil
}
// Ready retrieves a sequentially increasing list of transactions starting at the
// provided nonce that is ready for processing. The returned transactions will be
// removed from the list.
//
// Note, all transactions with nonces lower than start will also be returned to
// prevent getting into and invalid state. This is not something that should ever
// happen but better to be self correcting than failing!
func (l *txList) Ready(start uint64) types.Transactions {
return l.txs.Ready(start)
}
// Len returns the length of the transaction list.
func (l *txList) Len() int {
return l.txs.Len()
}
// Empty returns whether the list of transactions is empty or not.
func (l *txList) Empty() bool {
return l.Len() == 0
}
// Flatten creates a nonce-sorted slice of transactions based on the loosely
// sorted internal representation. The result of the sorting is cached in case
// it's requested again before any modifications are made to the contents.
func (l *txList) Flatten() types.Transactions {
return l.txs.Flatten()
}
// LastElement returns the last element of a flattened list, thus, the
// transaction with the highest nonce
func (l *txList) LastElement() *types.Transaction {
return l.txs.LastElement()
}
// priceHeap is a heap.Interface implementation over transactions for retrieving
// price-sorted transactions to discard when the pool fills up.
type priceHeap []*types.Transaction
func (h priceHeap) Len() int { return len(h) }
func (h priceHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h priceHeap) Less(i, j int) bool {
// Sort primarily by price, returning the cheaper one
switch h[i].GasPriceCmp(h[j]) {
case -1:
return true
case 1:
return false
}
// If the prices match, stabilize via nonces (high nonce is worse)
return h[i].Nonce() > h[j].Nonce()
}
func (h *priceHeap) Push(x interface{}) {
*h = append(*h, x.(*types.Transaction))
}
func (h *priceHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
old[n-1] = nil
*h = old[0 : n-1]
return x
}
// txPricedList is a price-sorted heap to allow operating on transactions pool
// contents in a price-incrementing way. It's built opon the all transactions
// in txpool but only interested in the remote part. It means only remote transactions
// will be considered for tracking, sorting, eviction, etc.
type txPricedList struct {
all *txLookup // Pointer to the map of all transactions
remotes *priceHeap // Heap of prices of all the stored **remote** transactions
stales int // Number of stale price points to (re-heap trigger)
}
// newTxPricedList creates a new price-sorted transaction heap.
func newTxPricedList(all *txLookup) *txPricedList {
return &txPricedList{
all: all,
remotes: new(priceHeap),
}
}
// Put inserts a new transaction into the heap.
func (l *txPricedList) Put(tx *types.Transaction, local bool) {
if local {
return
}
heap.Push(l.remotes, tx)
}
// Removed notifies the prices transaction list that an old transaction dropped
// from the pool. The list will just keep a counter of stale objects and update
// the heap if a large enough ratio of transactions go stale.
func (l *txPricedList) Removed(count int) {
// Bump the stale counter, but exit if still too low (< 25%)
l.stales += count
if l.stales <= len(*l.remotes)/4 {
return
}
// Seems we've reached a critical number of stale transactions, reheap
l.Reheap()
}
// Cap finds all the transactions below the given price threshold, drops them
// from the priced list and returns them for further removal from the entire pool.
//
// Note: only remote transactions will be considered for eviction.
func (l *txPricedList) Cap(threshold *big.Int) types.Transactions {
drop := make(types.Transactions, 0, 128) // Remote underpriced transactions to drop
for len(*l.remotes) > 0 {
// Discard stale transactions if found during cleanup
cheapest := (*l.remotes)[0]
if l.all.GetRemote(cheapest.Hash()) == nil { // Removed or migrated
heap.Pop(l.remotes)
l.stales--
continue
}
// Stop the discards if we've reached the threshold
if cheapest.GasPriceIntCmp(threshold) >= 0 {
break
}
heap.Pop(l.remotes)
drop = append(drop, cheapest)
}
return drop
}
// Underpriced checks whether a transaction is cheaper than (or as cheap as) the
// lowest priced (remote) transaction currently being tracked.
func (l *txPricedList) Underpriced(tx *types.Transaction) bool {
// Discard stale price points if found at the heap start
for len(*l.remotes) > 0 {
head := []*types.Transaction(*l.remotes)[0]
if l.all.GetRemote(head.Hash()) == nil { // Removed or migrated
l.stales--
heap.Pop(l.remotes)
continue
}
break
}
// Check if the transaction is underpriced or not
if len(*l.remotes) == 0 {
return false // There is no remote transaction at all.
}
// If the remote transaction is even cheaper than the
// cheapest one tracked locally, reject it.
cheapest := []*types.Transaction(*l.remotes)[0]
return cheapest.GasPriceCmp(tx) >= 0
}
// Discard finds a number of most underpriced transactions, removes them from the
// priced list and returns them for further removal from the entire pool.
//
// Note local transaction won't be considered for eviction.
func (l *txPricedList) Discard(slots int, force bool) (types.Transactions, bool) {
drop := make(types.Transactions, 0, slots) // Remote underpriced transactions to drop
for len(*l.remotes) > 0 && slots > 0 {
// Discard stale transactions if found during cleanup
tx := heap.Pop(l.remotes).(*types.Transaction)
if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated
l.stales--
continue
}
// Non stale transaction found, discard it
drop = append(drop, tx)
slots -= numSlots(tx)
}
// If we still can't make enough room for the new transaction
if slots > 0 && !force {
for _, tx := range drop {
heap.Push(l.remotes, tx)
}
return nil, false
}
return drop, true
}
// Reheap forcibly rebuilds the heap based on the current remote transaction set.
func (l *txPricedList) Reheap() {
reheap := make(priceHeap, 0, l.all.RemoteCount())
l.stales, l.remotes = 0, &reheap
l.all.Range(func(hash common.Hash, tx *types.Transaction, local bool) bool {
*l.remotes = append(*l.remotes, tx)
return true
}, false, true) // Only iterate remotes
heap.Init(l.remotes)
}