-
Notifications
You must be signed in to change notification settings - Fork 48
/
committer.go
279 lines (259 loc) · 7.91 KB
/
committer.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
// Copyright 2019 The CortexTheseus Authors
// This file is part of the CortexTheseus library.
//
// The CortexTheseus library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The CortexTheseus library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the CortexTheseus library. If not, see <http://www.gnu.org/licenses/>.
package trie
import (
"errors"
"fmt"
"sync"
"github.com/CortexFoundation/CortexTheseus/common"
"github.com/CortexFoundation/CortexTheseus/rlp"
"golang.org/x/crypto/sha3"
)
// leafChanSize is the size of the leafCh. It's a pretty arbitrary number, to allow
// some paralellism but not incur too much memory overhead.
const leafChanSize = 200
// leaf represents a trie leaf value
type leaf struct {
size int // size of the rlp data (estimate)
hash common.Hash // hash of rlp data
node node // the node to commit
vnodes bool // set to true if the node (possibly) contains a valueNode
}
// committer is a type used for the trie Commit operation. A committer has some
// internal preallocated temp space, and also a callback that is invoked when
// leaves are committed. The leafs are passed through the `leafCh`, to allow
// some level of paralellism.
// By 'some level' of parallelism, it's still the case that all leaves will be
// processed sequentially - onleaf will never be called in parallel or out of order.
type committer struct {
tmp sliceBuffer
sha keccakState
onleaf LeafCallback
leafCh chan *leaf
}
// committers live in a global sync.Pool
var committerPool = sync.Pool{
New: func() interface{} {
return &committer{
tmp: make(sliceBuffer, 0, 550), // cap is as large as a full fullNode.
sha: sha3.NewLegacyKeccak256().(keccakState),
}
},
}
// newCommitter creates a new committer or picks one from the pool.
func newCommitter() *committer {
return committerPool.Get().(*committer)
}
func returnCommitterToPool(h *committer) {
h.onleaf = nil
h.leafCh = nil
committerPool.Put(h)
}
// commitNeeded returns 'false' if the given node is already in sync with db
func (c *committer) commitNeeded(n node) bool {
hash, dirty := n.cache()
return hash == nil || dirty
}
// commit collapses a node down into a hash node and inserts it into the database
func (c *committer) Commit(n node, db *Database) (hashNode, error) {
if db == nil {
return nil, errors.New("no db provided")
}
h, err := c.commit(n, db, true)
if err != nil {
return nil, err
}
return h.(hashNode), nil
}
// commit collapses a node down into a hash node and inserts it into the database
func (c *committer) commit(n node, db *Database, force bool) (node, error) {
// if this path is clean, use available cached data
hash, dirty := n.cache()
if hash != nil && !dirty {
return hash, nil
}
// Commit children, then parent, and remove remove the dirty flag.
switch cn := n.(type) {
case *shortNode:
// Commit child
collapsed := cn.copy()
if _, ok := cn.Val.(valueNode); !ok {
if childV, err := c.commit(cn.Val, db, false); err != nil {
return nil, err
} else {
collapsed.Val = childV
}
}
// The key needs to be copied, since we're delivering it to database
collapsed.Key = hexToCompact(cn.Key)
hashedNode := c.store(collapsed, db, force, true)
if hn, ok := hashedNode.(hashNode); ok {
return hn, nil
} else {
return collapsed, nil
}
case *fullNode:
hashedKids, hasVnodes, err := c.commitChildren(cn, db, force)
if err != nil {
return nil, err
}
collapsed := cn.copy()
collapsed.Children = hashedKids
hashedNode := c.store(collapsed, db, force, hasVnodes)
if hn, ok := hashedNode.(hashNode); ok {
return hn, nil
} else {
return collapsed, nil
}
case valueNode:
return c.store(cn, db, force, false), nil
// hashnodes aren't stored
case hashNode:
return cn, nil
}
return hash, nil
}
// commitChildren commits the children of the given fullnode
func (c *committer) commitChildren(n *fullNode, db *Database, force bool) ([17]node, bool, error) {
var children [17]node
var hasValueNodeChildren = false
for i, child := range n.Children {
if child == nil {
continue
}
hnode, err := c.commit(child, db, false)
if err != nil {
return children, false, err
}
children[i] = hnode
if _, ok := hnode.(valueNode); ok {
hasValueNodeChildren = true
}
}
return children, hasValueNodeChildren, nil
}
// store hashes the node n and if we have a storage layer specified, it writes
// the key/value pair to it and tracks any node->child references as well as any
// node->external trie references.
func (c *committer) store(n node, db *Database, force bool, hasVnodeChildren bool) node {
// Larger nodes are replaced by their hash and stored in the database.
var (
hash, _ = n.cache()
size int
)
if hash == nil {
if vn, ok := n.(valueNode); ok {
c.tmp.Reset()
if err := rlp.Encode(&c.tmp, vn); err != nil {
panic("encode error: " + err.Error())
}
size = len(c.tmp)
if size < 32 && !force {
return n // Nodes smaller than 32 bytes are stored inside their parent
}
hash = c.makeHashNode(c.tmp)
} else {
// This was not generated - must be a small node stored in the parent
// No need to do anything here
return n
}
} else {
// We have the hash already, estimate the RLP encoding-size of the node.
// The size is used for mem tracking, does not need to be exact
size = estimateSize(n)
}
// If we're using channel-based leaf-reporting, send to channel.
// The leaf channel will be active only when there an active leaf-callback
if c.leafCh != nil {
c.leafCh <- &leaf{
size: size,
hash: common.BytesToHash(hash),
node: n,
vnodes: hasVnodeChildren,
}
} else if db != nil {
// No leaf-callback used, but there's still a database. Do serial
// insertion
db.lock.Lock()
db.insert(common.BytesToHash(hash), size, n)
db.lock.Unlock()
}
return hash
}
// commitLoop does the actual insert + leaf callback for nodes
func (c *committer) commitLoop(db *Database) {
for item := range c.leafCh {
var (
hash = item.hash
size = item.size
n = item.node
hasVnodes = item.vnodes
)
// We are pooling the trie nodes into an intermediate memory cache
db.lock.Lock()
db.insert(hash, size, n)
db.lock.Unlock()
if c.onleaf != nil && hasVnodes {
switch n := n.(type) {
case *shortNode:
if child, ok := n.Val.(valueNode); ok {
c.onleaf(child, hash)
}
case *fullNode:
for i := 0; i < 16; i++ {
if child, ok := n.Children[i].(valueNode); ok {
c.onleaf(child, hash)
}
}
}
}
}
}
func (c *committer) makeHashNode(data []byte) hashNode {
n := make(hashNode, c.sha.Size())
c.sha.Reset()
c.sha.Write(data)
c.sha.Read(n)
return n
}
// estimateSize estimates the size of an rlp-encoded node, without actually
// rlp-encoding it (zero allocs). This method has been experimentally tried, and with a trie
// with 1000 leafs, the only errors above 1% are on small shortnodes, where this
// method overestimates by 2 or 3 bytes (e.g. 37 instead of 35)
func estimateSize(n node) int {
switch n := n.(type) {
case *shortNode:
// A short node contains a compacted key, and a value.
return 3 + len(n.Key) + estimateSize(n.Val)
case *fullNode:
// A full node contains up to 16 hashes (some nils), and a key
s := 3
for i := 0; i < 16; i++ {
if child := n.Children[i]; child != nil {
s += estimateSize(child)
} else {
s += 1
}
}
return s
case valueNode:
return 1 + len(n)
case hashNode:
return 1 + len(n)
default:
panic(fmt.Sprintf("node type %T", n))
}
}