-
Notifications
You must be signed in to change notification settings - Fork 0
/
3_ede_clustering_user_y3.yaml
100 lines (88 loc) · 2.22 KB
/
3_ede_clustering_user_y3.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
Connector:
# PREndpoint: 194.102.62.155
Dask:
SchedulerEndpoint: local
Scale: 3
SchedulerPort: 8787
EnforceCheck: False
MPort: 9200 # Moitoring port
KafkaEndpoint: 10.9.8.136
KafkaPort: 9092
KafkaTopic: edetopic
# Query: { "query": 'node_disk_written_bytes_total[5m]'}
Query: {"query": '{__name__=~"node.+"}[1m]'}
MetricsInterval: "1m" # Metrics datapoint interval definition
QSize: 0
Index: time
QDelay: 10s # Polling period for metrics fetching
Local: /Users/Gabriel/Dropbox/Research/ASPIDE/Datasets/ECI Chaos/Distributed Phase 1/finalized/single_node/training/df_anomaly.csv # Define the path to the local file for training
Mode:
Training: True
Validate: False
Detect: False
Filter:
DColumns: # Which columns to delete
- target
Fillna: True # fill none values with 0
Dropna: True # delete columns woth none values
Augmentation:
Scaler: # if not used set to false
StandardScaler: # All scalers from scikitlearn
copy: True
# with_mean: True
# with_std: True
# User defined clustering custom
#Training:
# Type: clustering
# Method: isoforest
# Export: clustering_1
# MethodSettings:
# n_estimators: 10
# max_samples: 10
# contamination: 0.1
# verbose: True
# bootstrap: True
#Training:
# Type: clustering
# Method: !!python/object/apply:edeuser.user_methods.user_iso
# kwds:
# n_estimators: 100
# contamination: 0.1
# max_features: 10
# n_jobs: -1
# warm_start: False
# random_state: 45
# bootstrap: True
# verbose: True
# max_samples: 100
# Export: clustering_y2
Training:
Type: clustering
Method: !!python/object/apply:edescikit.edepyod.ede_iso
kwds:
contamination: 0.01
n_estimators: 100
max_features: 1.0
bootstrap: True
n_jobs: -1
verbose: 1
Export: cluster_y2_v3
#Training:
# Type: clustering
# Method: !!python/object/apply:edescikit.edepyod.VAE_EDE
# kwd:
# contaminaton: 0.1
# verbose: 1
# Export: cluster_vae_y2
Detect:
Method: IsolationForest
Type: clustering
Load: clustering_2
Scaler: StandardScaler # Same as for training
Misc:
heap: 512m
checkpoint: True
delay: 10s
interval: 30m
resetindex: False
point: False