Skip to content

Commit

Permalink
Fixed Latex (ricorda sempre di mettere le ampersand tra spazi)
Browse files Browse the repository at this point in the history
  • Loading branch information
Darakuu committed Dec 17, 2023
1 parent d190795 commit 7eb8ca5
Showing 1 changed file with 22 additions and 15 deletions.
37 changes: 22 additions & 15 deletions content/Splay Tree.md
Original file line number Diff line number Diff line change
Expand Up @@ -112,21 +112,28 @@ Pertanto, possiamo utlizzare il potenziale $\Phi(T)$ per calcolare un upper boun
>Siano $a,b \in \mathbb{N^+}$, e sia $c \geq a+b$ 
>
>Allora: $\log a+\log b \leq 2\log c -2$
>
><ins>Dimostrazione</ins>
>Si osservi:
>$$\begin{align}
>(a+b)^2&=a^2+2ab+b^2 \\
> & = a^2-2ab+b^2+4ab \\
> & = (a-b)^2+4ab \\
> & \geq 4ab \\
>a+b & \geq 2\sqrt{ ab }
>\end{align} $$
>Considerando $c$
>$c\geq a+b\geq 2\sqrt{ ab }$
>Prendendo i logaritmi di ambo i membri:
>$\log c \geq 1+\dfrac{1}{2}(\log a+\log b)$
>$2\log c-2\geq \log a+\log b$

<ins>Dimostrazione</ins>
Si osservi:
$$
\begin{align}
(a+b)^2 & =a^2+2ab+b^2 \\
& = a^2-2ab+b^2+4ab \\
& = (a-b)^2+4ab \\
& \geq 4ab \\
a+b & \geq 2\sqrt{ ab }
\end{align}
$$
Considerando $c$ 

$c\geq a+b\geq 2\sqrt{ ab }$ 

Prendendo i logaritmi di ambo i membri: 

$\log c \geq 1+\dfrac{1}{2}(\log a+\log b)$ 

$2\log c-2\geq \log a+\log b\ \blacksquare$



Expand Down

0 comments on commit 7eb8ca5

Please sign in to comment.