-
Notifications
You must be signed in to change notification settings - Fork 19
/
dns_v2.go
582 lines (476 loc) · 17.3 KB
/
dns_v2.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
package process
import (
"bytes"
"encoding/binary"
"fmt"
"math"
"github.com/DataDog/mmh3"
)
// DNS data is encoded as a very basic bucketed hash table. There are two blocks, or buffers, of data:
//
//
// The "bucket" block contains all of the hash buckets. The format of each bucket is:
// varint for number of entries in bucket
// For each entry in the bucket:
// varint for length of ip
// ip bytes
// varint for number of names associated with the ip
// Each associated name is encoded as a varint which is the position of the actual name string in the encodedDnsDatabase
//
// The "position" block is a list of varints, one for each bucket, where each varint is a pointer to the start
// of the bucket in the bucket block
//
// The overall buffer is encoded as:
// 1 byte indicating version
// 2 bytes indicating the number of buckets
// varint indicating the length of the name buffer.
// varint indicating the length of the position buffer
// varint indicating the position of the "middle" (bucketCount / 2) bucket in the position block
// We will use this to skip the half of the buckets when searching for the target bucket index
// position block
// bucket block
//
// Notes:
// Using varints saves space at the cost of not having random access to certain sections of data, particularly the
// bucket position mapping. This was a deliberate trade off to reduce the size of the payload and thus memory usage
//
// Varints are also more finicky to deal with in terms of calculating required space ahead of time. This increases
// the implementation complexity, or at least the line count, but we reduce allocations & memory usage by
// pre-sizing the output buffers
//
// This type is not thread safe
type V2DNSEncoder struct {
BucketFactor float64
scratch [binary.MaxVarintLen64]byte // Used for varint encoding
}
/*
type bucketEntry struct {
keys []string
size int
}
*/
// 1 byte for version, 2 byte for bucket count
const dns1Version2PreambleLength = 3
// Used for calculating the number of buckets for a given input map.
// Currently the bucket count is calculated as `len(input) * bucketFactor`
//const defaultBucketFactor = 0.75
func NewV2DNSEncoder() DNSEncoderV2 {
return &V2DNSEncoder{
BucketFactor: defaultBucketFactor,
}
}
func (e *V2DNSEncoder) Encode(dns map[string]*DNSEntry) ([]byte, error) {
return nil, fmt.Errorf("Encode not valid in V2")
}
func (e *V2DNSEncoder) EncodeMapped(dns map[string]*DNSDatabaseEntry, indexToOffset []int32) ([]byte, error) {
if len(dns) == 0 {
return nil, nil
}
bucketCount := getV2BucketCount(dns, e.BucketFactor)
buckets := make([]bucketEntry, bucketCount)
allBucketsEmpty := true
// We do three things here:
// Calculate the size in bytes for each bucket
// The final value of `nameBufferLength` is the size of the name buffer
// the size of the name buffer is the number of entries * sizeof(uint32)
for ip, entry := range dns {
if len(entry.NameOffsets) == 0 {
continue
}
if len(entry.NameOffsets) != 0 && indexToOffset == nil {
return nil, fmt.Errorf("missing index to offset")
}
allBucketsEmpty = false
bucket := int(mmh3.Hash32([]byte(ip))) % bucketCount
buckets[bucket].keys = append(buckets[bucket].keys, ip)
buckets[bucket].size += e.varIntSize(len(ip))
buckets[bucket].size += len(ip)
buckets[bucket].size += e.varIntSize(len(entry.NameOffsets))
for _, nameindex := range entry.NameOffsets {
if nameindex > int32(len(indexToOffset)) {
return nil, fmt.Errorf("index out of range")
}
// we're converting the index to the offset on the fly here, because
// the offset wasn't known when the structure was first created.
buckets[bucket].size += e.varIntSize(int(indexToOffset[nameindex]))
}
}
// Exit early if all the buckets are empty
if allBucketsEmpty {
return nil, nil
}
bucketBufferLength := 0
positionBufferLength := 0
// We encode the position of the "middle" bucket in the position buffer as an optimization for reads that
// lets us skip half of the buckets when scanning for the bucket index
middleBucket := bucketCount / 2
middleBucketPosition := 0
// The size of each bucket also includes the length of the number of keys so add that to each bucket size
// Calculate the size of the position buffer by summing the length of the varints of each bucket position
// Calculate the size of the bucket buffer by summing the sizes of all the buckets
for i := range buckets {
buckets[i].size += e.varIntSize(len(buckets[i].keys))
if i == middleBucket {
middleBucketPosition = positionBufferLength
}
positionBufferLength += e.varIntSize(bucketBufferLength)
bucketBufferLength += buckets[i].size
}
var bucketCountBuf [2]byte
binary.LittleEndian.PutUint16(bucketCountBuf[:], uint16(bucketCount))
sizeOfPositionBufferLength := e.varIntSize(positionBufferLength)
sizeOfMiddleBucketPosition := e.varIntSize(middleBucketPosition)
metaLength := dns1Version2PreambleLength + sizeOfPositionBufferLength + sizeOfMiddleBucketPosition
bufferSize := metaLength + positionBufferLength + bucketBufferLength
buffer := make([]byte, bufferSize)
metaBuffer := buffer[:0]
positionBuffer := buffer[metaLength:][:0]
bucketBuffer := buffer[metaLength+positionBufferLength:][:0]
metaBuffer = append(metaBuffer, dnsVersion2)
metaBuffer = append(metaBuffer, bucketCountBuf[:]...)
metaBuffer = e.appendVarInt(metaBuffer, positionBufferLength)
metaBuffer = e.appendVarInt(metaBuffer, middleBucketPosition)
for i := range buckets {
bucketBuffer = e.appendVarInt(bucketBuffer, len(buckets[i].keys))
for _, ip := range buckets[i].keys {
entry := dns[ip]
bucketBuffer = e.appendVarInt(bucketBuffer, len(ip))
bucketBuffer = append(bucketBuffer, ip...)
bucketBuffer = e.appendVarInt(bucketBuffer, len(entry.NameOffsets))
for _, idx := range entry.NameOffsets {
// we're converting the index to the offset on the fly here, because
// the offset wasn't known when the structure was first created.
bucketBuffer = e.appendVarInt(bucketBuffer, int(indexToOffset[idx]))
}
}
}
// The position of each bucket is the cumulative sum of the sizes of the previous buckets
positionCounter := 0
for i := 0; i < bucketCount; i++ {
bucketPosition := 0
if i > 0 {
bucketPosition = buckets[i-1].size
}
positionCounter += bucketPosition
positionBuffer = e.appendVarInt(positionBuffer, positionCounter)
}
return buffer, nil
}
func (e *V2DNSEncoder) EncodeDomainDatabase(names []string) ([]byte, []int32, error) {
if len(names) == 0 {
return nil, nil, nil
}
offsets := make([]int32, len(names))
// walk the list of strings, figure out how much size we need
bufferSize := e.varIntSize(len(names))
// see large comment below. Hard-coding offsetofmiddle
offsetOfMiddle := 0
bufferSize += e.varIntSize(offsetOfMiddle)
for _, val := range names {
/* we're going to hard-code the `offsetofmiddle` to zero, and not use it.
Keep the field, so we don't have to rev the layout of the buffer.
but don't use it as there's a very awful bug here.
Previous code:
if idx == indexOfMiddle {
offsetOfMiddle = bufferSize
bufferSize += e.varIntSize(offsetOfMiddle)
offsetOfMiddle = bufferSize
}
In the above, if offsetOfMiddle happens to be 127 (or any other subsequent size
that causes the size of a varint to go up), we have an off-by-one bug. The offset
is 127, so we compute the size (which is 1), and then increment the buffer size to
match. However, since the offsetOfMiddle is now 128, the size of the varint is now
2, and the whole buffer's whacked. Only when the middle happens to be on the boundary
of when the varint size changes.
In this buffer, we weren't actually using the indexOfMiddle, it was left for
future optimization. Now, _never_ use it.
*/
bufferSize += e.varIntSize(len(val))
bufferSize += len(val)
}
buffer := make([]byte, bufferSize)
metaBuffer := buffer[:0]
// write the number of names
metaBuffer = e.appendVarInt(metaBuffer, len(names))
// write the offset of the middle string
metaBuffer = e.appendVarInt(metaBuffer, offsetOfMiddle)
for idx, val := range names {
// need to store the offset of the beginning of each string, by index.
// when finally encoded, the consumers will get offsets into this
// buffer (for fast searching).
offsets[idx] = int32(len(metaBuffer))
valLen := len(val)
metaBuffer = e.appendVarInt(metaBuffer, valLen)
metaBuffer = append(metaBuffer, val...)
}
return buffer, offsets, nil
}
func (e *V2DNSEncoder) varIntSize(value int) int {
return binary.PutUvarint(e.scratch[0:], uint64(value))
}
func (e *V2DNSEncoder) appendVarInt(buf []byte, value int) []byte {
bytesWritten := binary.PutUvarint(e.scratch[0:], uint64(value))
return append(buf, e.scratch[0:bytesWritten]...)
}
// getV2 returns a single offset into the name buffer for the first
// domain string, followed by a slice of the offsets into the buffer
// for the remaining strings.
func getV2(buf []byte, ip string) (int32, []int32) {
var first int32 = -1
var names []int32
iterateDNSV2(buf, ip, func(i, total int, entry int32) bool {
if i == 0 {
first = entry
if total > 1 {
names = make([]int32, 0, total-1)
}
} else {
names = append(names, entry)
}
return true
})
return first, names
}
// returns a slice of all of the strings in the encodedDnsDomains list.
func getDNSNameListV2(buf []byte) []string {
var names []string
num, bytesRead := binary.Uvarint(buf[0:])
if bytesRead <= 0 {
return nil // real error?
}
// read the offset of the middle index; however, since we're reading
// the whole list we don't need it.
// important. _never_ use the middle index; it's not expected to be valid.
_, bytesReadForMiddle := binary.Uvarint(buf[bytesRead:])
if bytesRead <= 0 {
return nil // real error?
}
bytesRead += int(bytesReadForMiddle)
for count := uint64(0); count < num && bytesRead < len(buf); count++ {
namelen, bytesReadForNameLen := binary.Uvarint(buf[bytesRead:])
if bytesRead <= 0 {
return nil // real error?
}
bytesRead += bytesReadForNameLen
name := string(buf[bytesRead : bytesRead+int(namelen)])
names = append(names, name)
bytesRead += int(namelen)
}
return names
}
func getDNSNameAsByteSliceByOffset(buf []byte, offset int) (stringasbyteslice []byte, err error) {
if offset >= len(buf) {
return nil, fmt.Errorf("offset out of range %d >= %d", offset, len(buf))
}
if offset < 0 {
return nil, fmt.Errorf("offset out of range %d < 0", offset)
}
namelen, bytesReadForNameLen := binary.Uvarint(buf[offset:])
if bytesReadForNameLen <= 0 {
return nil, fmt.Errorf("illegal namelen")
}
offset += bytesReadForNameLen
if offset+int(namelen) > len(buf) {
return nil, fmt.Errorf("offset out of range [%d:%d] > %d", offset, offset+int(namelen), len(buf))
}
if offset+int(namelen) <= offset {
return nil, fmt.Errorf("illegal namelen")
}
return buf[offset : offset+int(namelen)], nil
}
func getDNSNameFromListByOffset(buf []byte, offset int) (string, error) {
byteslice, err := getDNSNameAsByteSliceByOffset(buf, offset)
if err != nil {
return "", err
}
name := string(byteslice)
return name, nil
}
func iterateDNSV2(buf []byte, ip string, cb func(i, total int, entry int32) bool) error {
return unsafeIterateDNSV2(buf, ip, func(i, total int, entry int32) bool {
return cb(i, total, entry)
})
}
func unsafeIterateDNSV2(buf []byte, ip string, cb func(i, total int, entry int32) bool) error {
bufLen := len(buf)
// Needs 3 bytes so that buf[1:] can convert to uint16
if bufLen <= 2 {
return fmt.Errorf(bufTooShortStr)
}
// Read overview:
// Compute the target bucket for the given ip
// Iterate over all the buckets to find position of the given bucket
// Advance to the position of the bucket
// For each entry in the bucket:
// Compare the key to the given IP and store the comparison result
// Iterate through the name positions associated with the key.
// If the key was a match, load the name value and add it to the result list. Return once all names are processed
// Otherwise iterate through the name positions to reach the next bucket entry
bucketCount := int(binary.LittleEndian.Uint16(buf[1:]))
if bucketCount == 0 {
return fmt.Errorf("illegal bucket count")
}
// skip the preamble
index := dns1Version2PreambleLength
if index > bufLen {
return fmt.Errorf("dns buffer is too short, invalid preamble")
}
positionBufferLen, bytesRead := binary.Uvarint(buf[index:])
if bytesRead <= 0 {
return fmt.Errorf("illegal positionBufferLen")
}
index += bytesRead
if index > bufLen {
return fmt.Errorf("dns buffer is too short, invalid position buffer length")
}
middleBucketPosition, bytesRead := binary.Uvarint(buf[index:])
if bytesRead <= 0 {
return fmt.Errorf("illegal middleBucketPosition")
}
index += bytesRead
bucket := int(mmh3.Hash32([]byte(ip))) % bucketCount
// The length of the metadata is the current read index. We will use this to calculate the bucket read index below
metaLength := index
middleBucket := bucketCount / 2
startBucket := 0
endBucket := bucketCount
if bucket >= middleBucket {
startBucket = middleBucket
index += int(middleBucketPosition)
if index > len(buf) || index < 0 {
return fmt.Errorf("illegal middleBucketPosition")
}
}
// Search through the bucket map to find the position of the target bucket
// Due to varints, we don't know how large the bucket index is
// We iterate through all the buckets in order to advance the read pointer to the start of the bucket data
var bucketPosition int
for i := startBucket; i < endBucket; i++ {
if index > bufLen {
return fmt.Errorf("dns buffer is too short, invalid bucket position")
}
value, bytesRead := binary.Uvarint(buf[index:])
if bytesRead <= 0 {
return fmt.Errorf("illegal bucket value")
}
index += bytesRead
if bucket == i {
bucketPosition = int(value)
break
}
}
// Move read index to the start of the bucket data. Skip the metadata and the position buffer
newIndex := metaLength + int(positionBufferLen) + bucketPosition
if newIndex < index {
return fmt.Errorf("illegal overflow")
}
index = newIndex
if index > bufLen {
return fmt.Errorf("dns buffer is too short, invalid bucket length")
}
bucketLength, bytesRead := binary.Uvarint(buf[index:])
if bytesRead <= 0 {
return fmt.Errorf("illegal bucketLength")
}
index += bytesRead
for i := 0; i < int(bucketLength); i++ {
if index > bufLen {
return fmt.Errorf("dns buffer is too short, invalid key length")
}
keyLength, bytesRead := binary.Uvarint(buf[index:])
if bytesRead <= 0 {
return fmt.Errorf("illegal keyLength")
}
index += bytesRead
if index > bufLen || (index+int(keyLength)) > bufLen {
return fmt.Errorf("dns buffer is too short, invalid key data`")
}
if index+int(keyLength) <= index {
return fmt.Errorf("illegal keyLength: %d", keyLength)
}
key := buf[index : index+int(keyLength)]
index += int(keyLength)
matched := bytes.Equal(key, []byte(ip))
if index > bufLen {
return fmt.Errorf("dns buffer is too short, invalid value data`")
}
nameCount, bytesRead := binary.Uvarint(buf[index:])
if bytesRead <= 0 {
return fmt.Errorf("illegal name count")
}
index += bytesRead
// Advance through all name positions
// We still need to do this even if the current entry didn't match in order to get to the next bucket entry
for j := 0; j < int(nameCount); j++ {
if index > bufLen {
return fmt.Errorf("dns buffer is too short, invalid name data`")
}
nameIndex, bytesRead := binary.Uvarint(buf[index:])
if bytesRead <= 0 {
return fmt.Errorf("illegal name index")
}
index += bytesRead
if !matched {
continue
}
if !cb(j, int(nameCount), int32(nameIndex)) {
return nil
}
}
if matched {
return nil
}
}
return nil
}
func getV2BucketCount(dns map[string]*DNSDatabaseEntry, bucketFactor float64) int {
bucketCount := int(float64(len(dns)) * bucketFactor)
if bucketCount == 0 {
return 1
}
if bucketCount > math.MaxUint16 {
return math.MaxUint16
}
return bucketCount
}
// GetDNSV2 gets the DNS offsets for the given IP from the given buffer
// the buffer is expected the be the encoded bucket hashtable described above
// the results are offsets into the raw buffer of domain strings (encodedDomainDatabase)
func GetDNSV2(buf []byte, ip string) (int32, []int32, error) {
if len(buf) == 0 || ip == "" {
return -1, nil, nil
}
switch buf[0] {
case dnsVersion2:
first, strings := getV2(buf, ip)
return first, strings, nil
}
return -1, nil, fmt.Errorf("Unexpected version %v", buf[0])
}
// IterateDNS invokes the callback function for each DNS entry for the given IP in the given buffer
// the callback parameter `entry` is an offset into the raw buffer of domain strings
// (encodedDomainDatabase)
func IterateDNSV2(buf []byte, ip string, cb func(i, total int, entry int32) bool) error {
if len(buf) == 0 || ip == "" {
return nil
}
switch buf[0] {
case dnsVersion2:
iterateDNSV2(buf, ip, cb)
return nil
}
return fmt.Errorf("Unexpected version %v", buf[0])
}
// UnsafeIterateDNS invokes the callback function for each DNS entry for the given IP in the given buffer.
// Each entry is a the slice from the overall buffer. It should be copied before use
func UnsafeIterateDNSV2(buf []byte, ip string, cb func(i, total int, entry int32) bool) error {
if len(buf) == 0 || ip == "" {
return nil
}
switch buf[0] {
case dnsVersion2:
unsafeIterateDNSV2(buf, ip, cb)
return nil
}
return fmt.Errorf("Unexpected version %v", buf[0])
}