forked from sektioneins/suhosin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
aes.c
382 lines (317 loc) · 9.42 KB
/
aes.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/* Rijndael Block Cipher - rijndael.c
Written by Mike Scott 21st April 1999
mike@compapp.dcu.ie
An alternative faster version is implemented in MIRACL
ftp://ftp.computing.dcu.ie/pub/crypto/miracl.zip
Copyright (c) 1999 Mike Scott
Simply compile and run, e.g.
cl /O2 rijndael.c (Microsoft C)
bcc32 /O2 rijndael.c (Borland C)
gcc -O2 rijndael.c -o rijndael (Gnu C)
Compiles and runs fine as a C++ program also.
See rijndael documentation. The code follows the documentation as closely
as possible, and where possible uses the same function and variable names.
Permission for free direct or derivative use is granted subject
to compliance with any conditions that the originators of the
algorithm place on its exploitation.
Inspiration from Brian Gladman's implementation is acknowledged.
Written for clarity, rather than speed.
Assumes long is 32 bit quantity.
Full implementation.
Endian indifferent.
*/
#include "php.h"
#include "php_suhosin.h"
/* rotates x one bit to the left */
#define ROTL(x) (((x)>>7)|((x)<<1))
/* Rotates 32-bit word left by 1, 2 or 3 byte */
#define ROTL8(x) (((x)<<8)|((x)>>24))
#define ROTL16(x) (((x)<<16)|((x)>>16))
#define ROTL24(x) (((x)<<24)|((x)>>8))
/* Fixed Data */
static BYTE InCo[4]={0xB,0xD,0x9,0xE}; /* Inverse Coefficients */
static BYTE fbsub[256];
static BYTE rbsub[256];
static BYTE ptab[256],ltab[256];
static WORD ftable[256];
static WORD rtable[256];
static WORD rco[30];
/* Parameter-dependent data */
static int Nk,Nb,Nr;
static WORD pack(BYTE *b)
{ /* pack bytes into a 32-bit Word */
return ((WORD)b[3]<<24)|((WORD)b[2]<<16)|((WORD)b[1]<<8)|(WORD)b[0];
}
static void unpack(WORD a,BYTE *b)
{ /* unpack bytes from a word */
b[0]=(BYTE)a;
b[1]=(BYTE)(a>>8);
b[2]=(BYTE)(a>>16);
b[3]=(BYTE)(a>>24);
}
static BYTE xtime(BYTE a)
{
BYTE b;
if (a&0x80) b=0x1B;
else b=0;
a<<=1;
a^=b;
return a;
}
static BYTE bmul(BYTE x,BYTE y)
{ /* x.y= AntiLog(Log(x) + Log(y)) */
if (x && y) return ptab[(ltab[x]+ltab[y])%255];
else return 0;
}
static WORD SubByte(WORD a)
{
BYTE b[4];
unpack(a,b);
b[0]=fbsub[b[0]];
b[1]=fbsub[b[1]];
b[2]=fbsub[b[2]];
b[3]=fbsub[b[3]];
return pack(b);
}
static BYTE product(WORD x,WORD y)
{ /* dot product of two 4-byte arrays */
BYTE xb[4],yb[4];
unpack(x,xb);
unpack(y,yb);
return bmul(xb[0],yb[0])^bmul(xb[1],yb[1])^bmul(xb[2],yb[2])^bmul(xb[3],yb[3]);
}
static WORD InvMixCol(WORD x)
{ /* matrix Multiplication */
WORD y,m;
BYTE b[4];
m=pack(InCo);
b[3]=product(m,x);
m=ROTL24(m);
b[2]=product(m,x);
m=ROTL24(m);
b[1]=product(m,x);
m=ROTL24(m);
b[0]=product(m,x);
y=pack(b);
return y;
}
static BYTE ByteSub(BYTE x)
{
BYTE y=ptab[255-ltab[x]]; /* multiplicative inverse */
x=y; x=ROTL(x);
y^=x; x=ROTL(x);
y^=x; x=ROTL(x);
y^=x; x=ROTL(x);
y^=x; y^=0x63;
return y;
}
void suhosin_aes_gentables()
{ /* generate tables */
int i;
BYTE y,b[4];
/* use 3 as primitive root to generate power and log tables */
ltab[0]=0;
ptab[0]=1; ltab[1]=0;
ptab[1]=3; ltab[3]=1;
for (i=2;i<256;i++)
{
ptab[i]=ptab[i-1]^xtime(ptab[i-1]);
ltab[ptab[i]]=i;
}
/* affine transformation:- each bit is xored with itself shifted one bit */
fbsub[0]=0x63;
rbsub[0x63]=0;
for (i=1;i<256;i++)
{
y=ByteSub((BYTE)i);
fbsub[i]=y; rbsub[y]=i;
}
for (i=0,y=1;i<30;i++)
{
rco[i]=y;
y=xtime(y);
}
/* calculate forward and reverse tables */
for (i=0;i<256;i++)
{
y=fbsub[i];
b[3]=y^xtime(y); b[2]=y;
b[1]=y; b[0]=xtime(y);
ftable[i]=pack(b);
y=rbsub[i];
b[3]=bmul(InCo[0],y); b[2]=bmul(InCo[1],y);
b[1]=bmul(InCo[2],y); b[0]=bmul(InCo[3],y);
rtable[i]=pack(b);
}
}
void suhosin_aes_gkey(int nb,int nk,char *key TSRMLS_DC)
{ /* blocksize=32*nb bits. Key=32*nk bits */
/* currently nb,bk = 4, 6 or 8 */
/* key comes as 4*Nk bytes */
/* Key Scheduler. Create expanded encryption key */
int i,j,k,m,N;
int C1,C2,C3;
WORD CipherKey[8];
Nb=nb; Nk=nk;
/* Nr is number of rounds */
if (Nb>=Nk) Nr=6+Nb;
else Nr=6+Nk;
C1=1;
if (Nb<8) { C2=2; C3=3; }
else { C2=3; C3=4; }
/* pre-calculate forward and reverse increments */
for (m=j=0;j<nb;j++,m+=3)
{
SUHOSIN_G(fi)[m]=(j+C1)%nb;
SUHOSIN_G(fi)[m+1]=(j+C2)%nb;
SUHOSIN_G(fi)[m+2]=(j+C3)%nb;
SUHOSIN_G(ri)[m]=(nb+j-C1)%nb;
SUHOSIN_G(ri)[m+1]=(nb+j-C2)%nb;
SUHOSIN_G(ri)[m+2]=(nb+j-C3)%nb;
}
N=Nb*(Nr+1);
for (i=j=0;i<Nk;i++,j+=4)
{
CipherKey[i]=pack((BYTE *)&key[j]);
}
for (i=0;i<Nk;i++) SUHOSIN_G(fkey)[i]=CipherKey[i];
for (j=Nk,k=0;j<N;j+=Nk,k++)
{
SUHOSIN_G(fkey)[j]=SUHOSIN_G(fkey)[j-Nk]^SubByte(ROTL24(SUHOSIN_G(fkey)[j-1]))^rco[k];
if (Nk<=6)
{
for (i=1;i<Nk && (i+j)<N;i++)
SUHOSIN_G(fkey)[i+j]=SUHOSIN_G(fkey)[i+j-Nk]^SUHOSIN_G(fkey)[i+j-1];
}
else
{
for (i=1;i<4 &&(i+j)<N;i++)
SUHOSIN_G(fkey)[i+j]=SUHOSIN_G(fkey)[i+j-Nk]^SUHOSIN_G(fkey)[i+j-1];
if ((j+4)<N) SUHOSIN_G(fkey)[j+4]=SUHOSIN_G(fkey)[j+4-Nk]^SubByte(SUHOSIN_G(fkey)[j+3]);
for (i=5;i<Nk && (i+j)<N;i++)
SUHOSIN_G(fkey)[i+j]=SUHOSIN_G(fkey)[i+j-Nk]^SUHOSIN_G(fkey)[i+j-1];
}
}
/* now for the expanded decrypt key in reverse order */
for (j=0;j<Nb;j++) SUHOSIN_G(rkey)[j+N-Nb]=SUHOSIN_G(fkey)[j];
for (i=Nb;i<N-Nb;i+=Nb)
{
k=N-Nb-i;
for (j=0;j<Nb;j++) SUHOSIN_G(rkey)[k+j]=InvMixCol(SUHOSIN_G(fkey)[i+j]);
}
for (j=N-Nb;j<N;j++) SUHOSIN_G(rkey)[j-N+Nb]=SUHOSIN_G(fkey)[j];
}
/* There is an obvious time/space trade-off possible here. *
* Instead of just one ftable[], I could have 4, the other *
* 3 pre-rotated to save the ROTL8, ROTL16 and ROTL24 overhead */
void suhosin_aes_encrypt(char *buff TSRMLS_DC)
{
int i,j,k,m;
WORD a[8],b[8],*x,*y,*t;
for (i=j=0;i<Nb;i++,j+=4)
{
a[i]=pack((BYTE *)&buff[j]);
a[i]^=SUHOSIN_G(fkey)[i];
}
k=Nb;
x=a; y=b;
/* State alternates between a and b */
for (i=1;i<Nr;i++)
{ /* Nr is number of rounds. May be odd. */
/* if Nb is fixed - unroll this next
loop and hard-code in the values of fi[] */
for (m=j=0;j<Nb;j++,m+=3)
{ /* deal with each 32-bit element of the State */
/* This is the time-critical bit */
y[j]=SUHOSIN_G(fkey)[k++]^ftable[(BYTE)x[j]]^
ROTL8(ftable[(BYTE)(x[SUHOSIN_G(fi)[m]]>>8)])^
ROTL16(ftable[(BYTE)(x[SUHOSIN_G(fi)[m+1]]>>16)])^
ROTL24(ftable[x[SUHOSIN_G(fi)[m+2]]>>24]);
}
t=x; x=y; y=t; /* swap pointers */
}
/* Last Round - unroll if possible */
for (m=j=0;j<Nb;j++,m+=3)
{
y[j]=SUHOSIN_G(fkey)[k++]^(WORD)fbsub[(BYTE)x[j]]^
ROTL8((WORD)fbsub[(BYTE)(x[SUHOSIN_G(fi)[m]]>>8)])^
ROTL16((WORD)fbsub[(BYTE)(x[SUHOSIN_G(fi)[m+1]]>>16)])^
ROTL24((WORD)fbsub[x[SUHOSIN_G(fi)[m+2]]>>24]);
}
for (i=j=0;i<Nb;i++,j+=4)
{
unpack(y[i],(BYTE *)&buff[j]);
x[i]=y[i]=0; /* clean up stack */
}
return;
}
void suhosin_aes_decrypt(char *buff TSRMLS_DC)
{
int i,j,k,m;
WORD a[8],b[8],*x,*y,*t;
for (i=j=0;i<Nb;i++,j+=4)
{
a[i]=pack((BYTE *)&buff[j]);
a[i]^=SUHOSIN_G(rkey)[i];
}
k=Nb;
x=a; y=b;
/* State alternates between a and b */
for (i=1;i<Nr;i++)
{ /* Nr is number of rounds. May be odd. */
/* if Nb is fixed - unroll this next
loop and hard-code in the values of ri[] */
for (m=j=0;j<Nb;j++,m+=3)
{ /* This is the time-critical bit */
y[j]=SUHOSIN_G(rkey)[k++]^rtable[(BYTE)x[j]]^
ROTL8(rtable[(BYTE)(x[SUHOSIN_G(ri)[m]]>>8)])^
ROTL16(rtable[(BYTE)(x[SUHOSIN_G(ri)[m+1]]>>16)])^
ROTL24(rtable[x[SUHOSIN_G(ri)[m+2]]>>24]);
}
t=x; x=y; y=t; /* swap pointers */
}
/* Last Round - unroll if possible */
for (m=j=0;j<Nb;j++,m+=3)
{
y[j]=SUHOSIN_G(rkey)[k++]^(WORD)rbsub[(BYTE)x[j]]^
ROTL8((WORD)rbsub[(BYTE)(x[SUHOSIN_G(ri)[m]]>>8)])^
ROTL16((WORD)rbsub[(BYTE)(x[SUHOSIN_G(ri)[m+1]]>>16)])^
ROTL24((WORD)rbsub[x[SUHOSIN_G(ri)[m+2]]>>24]);
}
for (i=j=0;i<Nb;i++,j+=4)
{
unpack(y[i],(BYTE *)&buff[j]);
x[i]=y[i]=0; /* clean up stack */
}
return;
}
/*
static int main()
{
int i,nb,nk;
char key[32];
char block[32];
gentables();
for (i=0;i<32;i++) key[i]=0;
key[0]=1;
for (i=0;i<32;i++) block[i]=i;
for (nb=4;nb<=8;nb+=2)
for (nk=4;nk<=8;nk+=2)
{
printf("\nBlock Size= %d bits, Key Size= %d bits\n",nb*32,nk*32);
gkey(nb,nk,key);
printf("Plain= ");
for (i=0;i<nb*4;i++) printf("%02x",block[i]);
printf("\n");
encrypt(block);
printf("Encrypt= ");
for (i=0;i<nb*4;i++) printf("%02x",(unsigned char)block[i]);
printf("\n");
decrypt(block);
printf("Decrypt= ");
for (i=0;i<nb*4;i++) printf("%02x",block[i]);
printf("\n");
}
return 0;
}
*/