-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
300 lines (251 loc) · 10.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 14 22:03:35 2020
@author: del
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import time
from tqdm import tqdm
def soft_align_attention(x1, x2, mask1, mask2):
'''
x1: batch_size * seq_len * hidden_size
x2: batch_size * seq_len * hidden_size
'''
# attention: batch_size * seq_len * seq_len
attention = torch.matmul(x1, x2.transpose(1, 2))
mask1 = mask1.float().masked_fill_(mask1, float('-inf'))
mask2 = mask2.float().masked_fill_(mask2, float('-inf'))
# weight: batch_size * seq_len * seq_len
weight1 = F.softmax(attention + mask2.unsqueeze(1), dim=-1)
x1_align = torch.matmul(weight1, x2)
weight2 = F.softmax(attention.transpose(1, 2) + mask1.unsqueeze(1), dim=-1)
x2_align = torch.matmul(weight2, x1)
# x_align: batch_size * seq_len * hidden_size
return x1_align, x2_align
def submul(x1, x2):
mul = x1 * x2
sub = x1 - x2
return torch.cat([sub, mul], -1)
def apply_multiple(x):
# input: batch_size * seq_len * (2 * hidden_size)
p1 = F.avg_pool1d(x.transpose(1, 2), x.size(1)).squeeze(-1)
p2 = F.max_pool1d(x.transpose(1, 2), x.size(1)).squeeze(-1)
# output: batch_size * (4 * hidden_size)
return torch.cat([p1, p2], 1)
def sort_by_seq_lens(batch, sequences_lengths, descending=True):
sorted_seq_lens, sorting_index =\
sequences_lengths.sort(0, descending=descending)
sorted_batch = batch.index_select(0, sorting_index)
idx_range =\
sequences_lengths.new_tensor(torch.arange(0, len(sequences_lengths)))
_, revese_mapping = sorting_index.sort(0, descending=False)
restoration_index = idx_range.index_select(0, revese_mapping)
return sorted_batch, sorted_seq_lens, sorting_index, restoration_index
def get_mask(sequences_batch, sequences_lengths):
batch_size = sequences_batch.size()[0]
max_length = torch.max(sequences_lengths)
mask = torch.ones(batch_size, max_length, dtype=torch.float)
mask[sequences_batch[:, :max_length] == 0] = 0.0
return mask
def masked_softmax(tensor, mask):
"""
Apply a masked softmax on the last dimension of a tensor.
The input tensor and mask should be of size (batch, *, sequence_length).
Args:
tensor: The tensor on which the softmax function must be applied along
the last dimension.
mask: A mask of the same size as the tensor with 0s in the positions of
the values that must be masked and 1s everywhere else.
Returns:
A tensor of the same size as the inputs containing the result of the
softmax.
"""
tensor_shape = tensor.size()
reshaped_tensor = tensor.view(-1, tensor_shape[-1])
# Reshape the mask so it matches the size of the input tensor.
while mask.dim() < tensor.dim():
mask = mask.unsqueeze(1)
mask = mask.expand_as(tensor).contiguous().float()
reshaped_mask = mask.view(-1, mask.size()[-1])
result = nn.functional.softmax(reshaped_tensor * reshaped_mask, dim=-1)
result = result * reshaped_mask
# 1e-13 is added to avoid divisions by zero.
result = result / (result.sum(dim=-1, keepdim=True) + 1e-13)
return result.view(*tensor_shape)
def weighted_sum(tensor, weights, mask):
"""
Apply a weighted sum on the vectors along the last dimension of 'tensor',
and mask the vectors in the result with 'mask'.
Args:
tensor: A tensor of vectors on which a weighted sum must be applied.
weights: The weights to use in the weighted sum.
mask: A mask to apply on the result of the weighted sum.
Returns:
A new tensor containing the result of the weighted sum after the mask
has been applied on it.
"""
weighted_sum = weights.bmm(tensor)
while mask.dim() < weighted_sum.dim():
mask = mask.unsqueeze(1)
mask = mask.transpose(-1, -2)
mask = mask.expand_as(weighted_sum).contiguous().float()
return weighted_sum * mask
# Code inspired from:
# https://github.com/allenai/allennlp/blob/master/allennlp/nn/util.py.
def replace_masked(tensor, mask, value):
"""
Replace the all the values of vectors in 'tensor' that are masked in
'masked' by 'value'.
Args:
tensor: The tensor in which the masked vectors must have their values
replaced.
mask: A mask indicating the vectors which must have their values
replaced.
value: The value to place in the masked vectors of 'tensor'.
Returns:
A new tensor of the same size as 'tensor' where the values of the
vectors masked in 'mask' were replaced by 'value'.
"""
mask = mask.unsqueeze(1).transpose(2, 1)
reverse_mask = 1.0 - mask
values_to_add = value * reverse_mask
return tensor * mask + values_to_add
def init_esim_weights(module):
"""
Initialise the weights of the ESIM model.
"""
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight.data)
nn.init.constant_(module.bias.data, 0.0)
elif isinstance(module, nn.LSTM):
nn.init.xavier_uniform_(module.weight_ih_l0.data)
nn.init.orthogonal_(module.weight_hh_l0.data)
nn.init.constant_(module.bias_ih_l0.data, 0.0)
nn.init.constant_(module.bias_hh_l0.data, 0.0)
hidden_size = module.bias_hh_l0.data.shape[0] // 4
module.bias_hh_l0.data[hidden_size:(2*hidden_size)] = 1.0
if (module.bidirectional):
nn.init.xavier_uniform_(module.weight_ih_l0_reverse.data)
nn.init.orthogonal_(module.weight_hh_l0_reverse.data)
nn.init.constant_(module.bias_ih_l0_reverse.data, 0.0)
nn.init.constant_(module.bias_hh_l0_reverse.data, 0.0)
module.bias_hh_l0_reverse.data[hidden_size:(2*hidden_size)] = 1.0
# 1 to [0, 1], 0 to [1, 0]
def label_transformer(labels):
transformed_labels = []
for i in labels:
transformed_labels.append([0, 1] if i else [1, 0])
return np.array(transformed_labels)
def correct_predictions(output_probabilities, targets):
"""
Compute the number of predictions that match some target classes in the
output of a model.
Args:
output_probabilities: A tensor of probabilities for different output
classes.
targets: The indices of the actual target classes.
Returns:
The number of correct predictions in 'output_probabilities'.
"""
_, out_classes = output_probabilities.max(dim=1)
correct = (out_classes == targets).sum()
return correct.item()
def validate(model, dataloader, criterion):
"""
Compute the loss and accuracy of a model on some validation dataset.
Args:
model: A torch module for which the loss and accuracy must be
computed.
dataloader: A DataLoader object to iterate over the validation data.
criterion: A loss criterion to use for computing the loss.
epoch: The number of the epoch for which validation is performed.
device: The device on which the model is located.
Returns:
epoch_time: The total time to compute the loss and accuracy on the
entire validation set.
epoch_loss: The loss computed on the entire validation set.
epoch_accuracy: The accuracy computed on the entire validation set.
"""
# Switch to evaluate mode.
model.eval()
device = model.device
epoch_start = time.time()
running_loss = 0.0
running_accuracy = 0.0
# Deactivate autograd for evaluation.
with torch.no_grad():
for batch in dataloader:
# Move input and output data to the GPU if one is used.
q1 = batch["q1"].to(device)
q1_lengths = batch["q1_length"].to(device)
q2 = batch["q2"].to(device)
q2_lengths = batch["q2_length"].to(device)
labels = batch["label"].to(device)
logits, probs = model(q1, q1_lengths, q2, q2_lengths)
loss = criterion(logits, labels)
running_loss += loss.item()
running_accuracy += correct_predictions(probs, labels)
epoch_time = time.time() - epoch_start
epoch_loss = running_loss / len(dataloader)
epoch_accuracy = running_accuracy / (len(dataloader.dataset))
return epoch_time, epoch_loss, epoch_accuracy
def train(model,
dataloader,
optimizer,
criterion,
epoch_number,
max_gradient_norm):
"""
Train a model for one epoch on some input data with a given optimizer and
criterion.
Args:
model: A torch module that must be trained on some input data.
dataloader: A DataLoader object to iterate over the training data.
optimizer: A torch optimizer to use for training on the input model.
criterion: A loss criterion to use for training.
epoch_number: The number of the epoch for which training is performed.
max_gradient_norm: Max. norm for gradient norm clipping.
Returns:
epoch_time: The total time necessary to train the epoch.
epoch_loss: The training loss computed for the epoch.
epoch_accuracy: The accuracy computed for the epoch.
"""
# Switch the model to train mode.
model.train()
device = model.device
epoch_start = time.time()
batch_time_avg = 0.0
running_loss = 0.0
correct_preds = 0
tqdm_batch_iterator = tqdm(dataloader)
for batch_index, batch in enumerate(tqdm_batch_iterator):
batch_start = time.time()
# Move input and output data to the GPU if it is used.
q1 = batch["q1"].to(device)
q1_lengths = batch["q1_length"].to(device)
q2 = batch["q2"].to(device)
q2_lengths = batch["q2_length"].to(device)
labels = batch["label"].to(device)
optimizer.zero_grad()
logits, probs = model(q1,
q1_lengths,
q2,
q2_lengths)
loss = criterion(logits, labels)
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), max_gradient_norm)
optimizer.step()
batch_time_avg += time.time() - batch_start
running_loss += loss.item()
correct_preds += correct_predictions(probs, labels)
description = "Avg. batch proc. time: {:.4f}s, loss: {:.4f}"\
.format(batch_time_avg/(batch_index+1),
running_loss/(batch_index+1))
tqdm_batch_iterator.set_description(description)
epoch_time = time.time() - epoch_start
epoch_loss = running_loss / len(dataloader)
epoch_accuracy = correct_preds / len(dataloader.dataset)
return epoch_time, epoch_loss, epoch_accuracy