forked from nndl/nndl.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
234 lines (227 loc) · 23.4 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
<!doctype html>
<html>
<head>
<meta charset='UTF-8'><meta name='viewport' content='width=device-width initial-scale=1'>
<title>神经网络与深度学习</title><link href='https://fonts.loli.net/css?family=Open+Sans:400italic,700italic,700,400&subset=latin,latin-ext' rel='stylesheet' type='text/css' /><style type='text/css'>html {overflow-x: initial !important;}:root { --bg-color:#ffffff; --text-color:#333333; --select-text-bg-color:#B5D6FC; --select-text-font-color:auto; --monospace:"Lucida Console",Consolas,"Courier",monospace; }
html { font-size: 14px; background-color: var(--bg-color); color: var(--text-color); font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; -webkit-font-smoothing: antialiased; }
body { margin: 0px; padding: 0px; height: auto; bottom: 0px; top: 0px; left: 0px; right: 0px; font-size: 1rem; line-height: 1.42857; overflow-x: hidden; background: inherit; }
iframe { margin: auto; }
a.url { word-break: break-all; }
a:active, a:hover { outline: 0px; }
.in-text-selection, ::selection { text-shadow: none; background: var(--select-text-bg-color); color: var(--select-text-font-color); }
#write { margin: 0px auto; height: auto; width: inherit; word-break: normal; word-wrap: break-word; position: relative; white-space: normal; overflow-x: visible; padding-top: 40px; }
#write.first-line-indent p { text-indent: 2em; }
#write.first-line-indent li p, #write.first-line-indent p * { text-indent: 0px; }
#write.first-line-indent li { margin-left: 2em; }
.for-image #write { padding-left: 8px; padding-right: 8px; }
body.typora-export { padding-left: 30px; padding-right: 30px; }
.typora-export .footnote-line, .typora-export li, .typora-export p { white-space: pre-wrap; }
@media screen and (max-width: 500px) {
body.typora-export { padding-left: 0px; padding-right: 0px; }
#write { padding-left: 20px; padding-right: 20px; }
.CodeMirror-sizer { margin-left: 0px !important; }
.CodeMirror-gutters { display: none !important; }
}
#write li > figure:first-child { margin-top: -20px; }
#write ol, #write ul { position: relative; }
img { max-width: 100%; vertical-align: middle; }
button, input, select, textarea { color: inherit; font-style: inherit; font-variant: inherit; font-weight: inherit; font-stretch: inherit; font-size: inherit; line-height: inherit; font-family: inherit; }
input[type="checkbox"], input[type="radio"] { line-height: normal; padding: 0px; }
*, ::after, ::before { box-sizing: border-box; }
#write h1, #write h2, #write h3, #write h4, #write h5, #write h6, #write p, #write pre { width: inherit; }
#write h1, #write h2, #write h3, #write h4, #write h5, #write h6, #write p { position: relative; }
h1, h2, h3, h4, h5, h6 { break-after: avoid-page; break-inside: avoid; orphans: 2; }
p { orphans: 4; }
h1 { font-size: 2rem; }
h2 { font-size: 1.8rem; }
h3 { font-size: 1.6rem; }
h4 { font-size: 1.4rem; }
h5 { font-size: 1.2rem; }
h6 { font-size: 1rem; }
.md-math-block, .md-rawblock, h1, h2, h3, h4, h5, h6, p { margin-top: 1rem; margin-bottom: 1rem; }
.hidden { display: none; }
.md-blockmeta { color: rgb(204, 204, 204); font-weight: 700; font-style: italic; }
a { cursor: pointer; }
sup.md-footnote { padding: 2px 4px; background-color: rgba(238, 238, 238, 0.7); color: rgb(85, 85, 85); border-radius: 4px; cursor: pointer; }
sup.md-footnote a, sup.md-footnote a:hover { color: inherit; text-transform: inherit; text-decoration: inherit; }
#write input[type="checkbox"] { cursor: pointer; width: inherit; height: inherit; }
figure { overflow-x: auto; margin: 1.2em 0px; max-width: calc(100% + 16px); padding: 0px; }
figure > table { margin: 0px !important; }
tr { break-inside: avoid; break-after: auto; }
thead { display: table-header-group; }
table { border-collapse: collapse; border-spacing: 0px; width: 100%; overflow: auto; break-inside: auto; text-align: left; }
table.md-table td { min-width: 32px; }
.CodeMirror-gutters { border-right: 0px; background-color: inherit; }
.CodeMirror { text-align: left; }
.CodeMirror-placeholder { opacity: 0.3; }
.CodeMirror pre { padding: 0px 4px; }
.CodeMirror-lines { padding: 0px; }
div.hr:focus { cursor: none; }
#write pre { white-space: pre-wrap; }
#write.fences-no-line-wrapping pre { white-space: pre; }
#write pre.ty-contain-cm { white-space: normal; }
.CodeMirror-gutters { margin-right: 4px; }
.md-fences { font-size: 0.9rem; display: block; break-inside: avoid; text-align: left; overflow: visible; white-space: pre; background: inherit; position: relative !important; }
.md-diagram-panel { width: 100%; margin-top: 10px; text-align: center; padding-top: 0px; padding-bottom: 8px; overflow-x: auto; }
#write .md-fences.mock-cm { white-space: pre-wrap; }
.md-fences.md-fences-with-lineno { padding-left: 0px; }
#write.fences-no-line-wrapping .md-fences.mock-cm { white-space: pre; overflow-x: auto; }
.md-fences.mock-cm.md-fences-with-lineno { padding-left: 8px; }
.CodeMirror-line, twitterwidget { break-inside: avoid; }
.footnotes { opacity: 0.8; font-size: 0.9rem; margin-top: 1em; margin-bottom: 1em; }
.footnotes + .footnotes { margin-top: 0px; }
.md-reset { margin: 0px; padding: 0px; border: 0px; outline: 0px; vertical-align: top; background: 0px 0px; text-decoration: none; text-shadow: none; float: none; position: static; width: auto; height: auto; white-space: nowrap; cursor: inherit; -webkit-tap-highlight-color: transparent; line-height: normal; font-weight: 400; text-align: left; box-sizing: content-box; direction: ltr; }
li div { padding-top: 0px; }
blockquote { margin: 1rem 0px; }
li .mathjax-block, li p { margin: 0.5rem 0px; }
li { margin: 0px; position: relative; }
blockquote > :last-child { margin-bottom: 0px; }
blockquote > :first-child, li > :first-child { margin-top: 0px; }
.footnotes-area { color: rgb(136, 136, 136); margin-top: 0.714rem; padding-bottom: 0.143rem; white-space: normal; }
#write .footnote-line { white-space: pre-wrap; }
@media print {
body, html { border: 1px solid transparent; height: 99%; break-after: avoid; break-before: avoid; }
#write { margin-top: 0px; padding-top: 0px; border-color: transparent !important; }
.typora-export * { -webkit-print-color-adjust: exact; }
html.blink-to-pdf { font-size: 13px; }
.typora-export #write { padding-left: 32px; padding-right: 32px; padding-bottom: 0px; break-after: avoid; }
.typora-export #write::after { height: 0px; }
@page { margin: 20mm 0px; }
}
.footnote-line { margin-top: 0.714em; font-size: 0.7em; }
a img, img a { cursor: pointer; }
pre.md-meta-block { font-size: 0.8rem; min-height: 0.8rem; white-space: pre-wrap; background: rgb(204, 204, 204); display: block; overflow-x: hidden; }
p > .md-image:only-child:not(.md-img-error) img, p > img:only-child { display: block; margin: auto; }
p > .md-image:only-child { display: inline-block; width: 100%; }
#write .MathJax_Display { margin: 0.8em 0px 0px; }
.md-math-block { width: 100%; }
.md-math-block:not(:empty)::after { display: none; }
[contenteditable="true"]:active, [contenteditable="true"]:focus { outline: 0px; box-shadow: none; }
.md-task-list-item { position: relative; list-style-type: none; }
.task-list-item.md-task-list-item { padding-left: 0px; }
.md-task-list-item > input { position: absolute; top: 0px; left: 0px; margin-left: -1.2em; margin-top: calc(1em - 10px); }
.math { font-size: 1rem; }
.md-toc { min-height: 3.58rem; position: relative; font-size: 0.9rem; border-radius: 10px; }
.md-toc-content { position: relative; margin-left: 0px; }
.md-toc-content::after, .md-toc::after { display: none; }
.md-toc-item { display: block; color: rgb(65, 131, 196); }
.md-toc-item a { text-decoration: none; }
.md-toc-inner:hover { text-decoration: underline; }
.md-toc-inner { display: inline-block; cursor: pointer; }
.md-toc-h1 .md-toc-inner { margin-left: 0px; font-weight: 700; }
.md-toc-h2 .md-toc-inner { margin-left: 2em; }
.md-toc-h3 .md-toc-inner { margin-left: 4em; }
.md-toc-h4 .md-toc-inner { margin-left: 6em; }
.md-toc-h5 .md-toc-inner { margin-left: 8em; }
.md-toc-h6 .md-toc-inner { margin-left: 10em; }
@media screen and (max-width: 48em) {
.md-toc-h3 .md-toc-inner { margin-left: 3.5em; }
.md-toc-h4 .md-toc-inner { margin-left: 5em; }
.md-toc-h5 .md-toc-inner { margin-left: 6.5em; }
.md-toc-h6 .md-toc-inner { margin-left: 8em; }
}
a.md-toc-inner { font-size: inherit; font-style: inherit; font-weight: inherit; line-height: inherit; }
.footnote-line a:not(.reversefootnote) { color: inherit; }
.md-attr { display: none; }
.md-fn-count::after { content: "."; }
code, pre, samp, tt { font-family: var(--monospace); }
kbd { margin: 0px 0.1em; padding: 0.1em 0.6em; font-size: 0.8em; color: rgb(36, 39, 41); background: rgb(255, 255, 255); border: 1px solid rgb(173, 179, 185); border-radius: 3px; box-shadow: rgba(12, 13, 14, 0.2) 0px 1px 0px, rgb(255, 255, 255) 0px 0px 0px 2px inset; white-space: nowrap; vertical-align: middle; }
.md-comment { color: rgb(162, 127, 3); opacity: 0.8; font-family: var(--monospace); }
code { text-align: left; vertical-align: initial; }
a.md-print-anchor { white-space: pre !important; border-width: initial !important; border-style: none !important; border-color: initial !important; display: inline-block !important; position: absolute !important; width: 1px !important; right: 0px !important; outline: 0px !important; background: 0px 0px !important; text-decoration: initial !important; text-shadow: initial !important; }
.md-inline-math .MathJax_SVG .noError { display: none !important; }
.html-for-mac .inline-math-svg .MathJax_SVG { vertical-align: 0.2px; }
.md-math-block .MathJax_SVG_Display { text-align: center; margin: 0px; position: relative; text-indent: 0px; max-width: none; max-height: none; min-height: 0px; min-width: 100%; width: auto; overflow-y: hidden; display: block !important; }
.MathJax_SVG_Display, .md-inline-math .MathJax_SVG_Display { width: auto; margin: inherit; display: inline-block !important; }
.MathJax_SVG .MJX-monospace { font-family: var(--monospace); }
.MathJax_SVG .MJX-sans-serif { font-family: sans-serif; }
.MathJax_SVG { display: inline; font-style: normal; font-weight: 400; line-height: normal; zoom: 90%; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; }
.MathJax_SVG * { transition: none; }
.MathJax_SVG_Display svg { vertical-align: middle !important; margin-bottom: 0px !important; }
.os-windows.monocolor-emoji .md-emoji { font-family: "Segoe UI Symbol", sans-serif; }
.md-diagram-panel > svg { max-width: 100%; }
[lang="mermaid"] svg, [lang="flow"] svg { max-width: 100%; }
[lang="mermaid"] .node text { font-size: 1rem; }
table tr th { border-bottom: 0px; }
video { max-width: 100%; display: block; margin: 0px auto; }
iframe { max-width: 100%; width: 100%; border: none; }
.highlight td, .highlight tr { border: 0px; }
:root { --side-bar-bg-color: #fafafa; --control-text-color: #777; }
html { font-size: 16px; }
body { font-family: "Open Sans", "Clear Sans", "Helvetica Neue", Helvetica, Arial, sans-serif; color: rgb(51, 51, 51); line-height: 1.6; }
#write { max-width: 860px; margin: 0px auto; padding: 30px 30px 100px; }
#write > ul:first-child, #write > ol:first-child { margin-top: 30px; }
a { color: rgb(65, 131, 196); }
h1, h2, h3, h4, h5, h6 { position: relative; margin-top: 1rem; margin-bottom: 1rem; font-weight: bold; line-height: 1.4; cursor: text; }
h1:hover a.anchor, h2:hover a.anchor, h3:hover a.anchor, h4:hover a.anchor, h5:hover a.anchor, h6:hover a.anchor { text-decoration: none; }
h1 tt, h1 code { font-size: inherit; }
h2 tt, h2 code { font-size: inherit; }
h3 tt, h3 code { font-size: inherit; }
h4 tt, h4 code { font-size: inherit; }
h5 tt, h5 code { font-size: inherit; }
h6 tt, h6 code { font-size: inherit; }
h1 { padding-bottom: 0.3em; font-size: 2.25em; line-height: 1.2; border-bottom: 1px solid rgb(238, 238, 238); }
h2 { padding-bottom: 0.3em; font-size: 1.75em; line-height: 1.225; border-bottom: 1px solid rgb(238, 238, 238); }
h3 { font-size: 1.5em; line-height: 1.43; }
h4 { font-size: 1.25em; }
h5 { font-size: 1em; }
h6 { font-size: 1em; color: rgb(119, 119, 119); }
p, blockquote, ul, ol, dl, table { margin: 0.8em 0px; }
li > ol, li > ul { margin: 0px; }
hr { height: 2px; padding: 0px; margin: 16px 0px; background-color: rgb(231, 231, 231); border: 0px none; overflow: hidden; box-sizing: content-box; }
li p.first { display: inline-block; }
ul, ol { padding-left: 30px; }
ul:first-child, ol:first-child { margin-top: 0px; }
ul:last-child, ol:last-child { margin-bottom: 0px; }
blockquote { border-left: 4px solid rgb(223, 226, 229); padding: 0px 15px; color: rgb(119, 119, 119); }
blockquote blockquote { padding-right: 0px; }
table { padding: 0px; word-break: initial; }
table tr { border-top: 1px solid rgb(223, 226, 229); margin: 0px; padding: 0px; }
table tr:nth-child(2n), thead { background-color: rgb(248, 248, 248); }
table tr th { font-weight: bold; border-width: 1px 1px 0px; border-top-style: solid; border-right-style: solid; border-left-style: solid; border-top-color: rgb(223, 226, 229); border-right-color: rgb(223, 226, 229); border-left-color: rgb(223, 226, 229); border-image: initial; border-bottom-style: initial; border-bottom-color: initial; text-align: left; margin: 0px; padding: 6px 13px; }
table tr td { border: 1px solid rgb(223, 226, 229); text-align: left; margin: 0px; padding: 6px 13px; }
table tr th:first-child, table tr td:first-child { margin-top: 0px; }
table tr th:last-child, table tr td:last-child { margin-bottom: 0px; }
.CodeMirror-lines { padding-left: 4px; }
.code-tooltip { box-shadow: rgba(0, 28, 36, 0.3) 0px 1px 1px 0px; border-top: 1px solid rgb(238, 242, 242); }
.md-fences, code, tt { border: 1px solid rgb(231, 234, 237); background-color: rgb(248, 248, 248); border-radius: 3px; padding: 2px 4px 0px; font-size: 0.9em; }
code { background-color: rgb(243, 244, 244); padding: 0px 2px; }
.md-fences { margin-bottom: 15px; margin-top: 15px; padding-top: 8px; padding-bottom: 6px; }
.md-task-list-item > input { margin-left: -1.3em; }
@media print {
html { font-size: 13px; }
table, pre { break-inside: avoid; }
pre { word-wrap: break-word; }
}
.md-fences { background-color: rgb(248, 248, 248); }
#write pre.md-meta-block { padding: 1rem; font-size: 85%; line-height: 1.45; background-color: rgb(247, 247, 247); border: 0px; border-radius: 3px; color: rgb(119, 119, 119); margin-top: 0px !important; }
.mathjax-block > .code-tooltip { bottom: 0.375rem; }
.md-mathjax-midline { background: rgb(250, 250, 250); }
#write > h3.md-focus::before { left: -1.5625rem; top: 0.375rem; }
#write > h4.md-focus::before { left: -1.5625rem; top: 0.285714rem; }
#write > h5.md-focus::before { left: -1.5625rem; top: 0.285714rem; }
#write > h6.md-focus::before { left: -1.5625rem; top: 0.285714rem; }
.md-image > .md-meta { border-radius: 3px; padding: 2px 0px 0px 4px; font-size: 0.9em; color: inherit; }
.md-tag { color: rgb(167, 167, 167); opacity: 1; }
.md-toc { margin-top: 20px; padding-bottom: 20px; }
.sidebar-tabs { border-bottom: none; }
#typora-quick-open { border: 1px solid rgb(221, 221, 221); background-color: rgb(248, 248, 248); }
#typora-quick-open-item { background-color: rgb(250, 250, 250); border-color: rgb(254, 254, 254) rgb(229, 229, 229) rgb(229, 229, 229) rgb(238, 238, 238); border-style: solid; border-width: 1px; }
.on-focus-mode blockquote { border-left-color: rgba(85, 85, 85, 0.12); }
header, .context-menu, .megamenu-content, footer { font-family: "Segoe UI", Arial, sans-serif; }
.file-node-content:hover .file-node-icon, .file-node-content:hover .file-node-open-state { visibility: visible; }
.mac-seamless-mode #typora-sidebar { background-color: var(--side-bar-bg-color); }
.md-lang { color: rgb(180, 101, 77); }
.html-for-mac .context-menu { --item-hover-bg-color: #E6F0FE; }
#md-notification .btn { border: 0px; }
.dropdown-menu .divider { border-color: rgb(229, 229, 229); }
.typora-export li, .typora-export p, .typora-export, .footnote-line {white-space: normal;}
</style>
</head>
<body class='typora-export os-windows' >
<div id='write' class = 'is-node'><h1><a name='header-n2' class='md-header-anchor '></a>神经网络与深度学习</h1><p>作者:<a href='https://xpqiu.github.io/'>邱锡鹏</a> 微博:<a href='http://weibo.com/xpqiu'>@邱锡鹏</a></p><h2><a name='header-n4' class='md-header-anchor '></a>关于本书</h2><p>近年来,以机器学习、知识图谱为代表的人工智能技术逐渐变得普及。从车牌识别、人脸识别、语音识别、智能问答、推荐系统到自动驾驶,人们在日常生活中都可能有意无意地使用到了人工智能技术。这些技术的背后都离不开人工智能领域研究者们的长期努力。特别是最近这几年,得益于数据的增多、计算能力的增强、学习算法的成熟以及应用场景的丰富,越来越多的人开始关注这一个“崭新”的研究领域:<em>深度学习</em>。深度学习以神经网络为主要模型,一开始用来解决机器学习中的表示学习问题。但是由于其强大的能力,深度学习越来越多地用来解决一些通用人工智能问题,比如推理、决策等。目前,深度学习技术在学术界和工业界取得了广泛的成功,受到高度重视,并掀起新一轮的人工智能热潮。</p><p>本课程主要介绍神经网络与深度学习中的基础知识、主要模型(卷积神经网络、循环神经网络等)以及在计算机视觉、自然语言处理等领域的应用。</p><p>要获取更新提醒,请关注<a href='https://github.com/nndl/nndl.github.io' target='_blank' class='url'>https://github.com/nndl/nndl.github.io</a></p><p>示例代码,见<a href='https://github.com/nndl/nndl-codes' target='_blank' class='url'>https://github.com/nndl/nndl-codes</a></p><p>课程练习,见<a href='https://github.com/nndl/exercise' target='_blank' class='url'>https://github.com/nndl/exercise</a></p><h2><a name='header-n10' class='md-header-anchor '></a>概要</h2><p>《神经网络与深度学习》3小时课程概要 <a href='./ppt/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E4%B8%8E%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0-3%E5%B0%8F%E6%97%B6.pptx'>ppt</a>(72M) <a href='./ppt/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E4%B8%8E%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0-3%E5%B0%8F%E6%97%B6.pdf'>pdf</a> (12M) </p><p>全书内容 <a href='nndl-book.pdf'>pdf</a> (updated 2019-4-10)、<a href='nndl-book-ipad.pdf'>ipad版</a> (updated 2019-4-10)</p><h2><a name='header-n13' class='md-header-anchor '></a>章节内容</h2><ol start='' ><li><a href='chap-%E7%BB%AA%E8%AE%BA.pdf'>绪论</a>[<a href='./ppt/chap-%E7%BB%AA%E8%AE%BA.pptx'>ppt</a>] (updated 2019-4-4)</li><li><a href='chap-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E6%A6%82%E8%BF%B0.pdf'>机器学习概述</a> [<a href='./ppt/chap-%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E6%A6%82%E8%BF%B0.pptx'>ppt</a>] (updated 2019-4-4)</li><li><a href='chap-%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B.pdf'>线性模型</a> [<a href='./ppt/chap-%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B.pptx'>ppt</a>] (updated 2019-4-4)</li><li><a href='chap-%E5%89%8D%E9%A6%88%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C.pdf'>前馈神经网络</a> [<a href='./ppt/chap-%E5%89%8D%E9%A6%88%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C.pptx'>ppt</a>] (updated 2019-4-4)</li><li><a href='chap-%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C.pdf'>卷积神经网络</a> [<a href='./ppt/chap-%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C.pptx'>ppt</a>] (updated 2019-4-4)</li><li><a href='chap-%E5%BE%AA%E7%8E%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C.pdf'>循环神经网络</a> [<a href='./ppt/chap-%E5%BE%AA%E7%8E%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C.pptx'>ppt</a>] (updated 2019-4-4)</li><li><a href='chap-%E7%BD%91%E7%BB%9C%E4%BC%98%E5%8C%96%E4%B8%8E%E6%AD%A3%E5%88%99%E5%8C%96.pdf'>网络优化与正则化</a> [<a href='./ppt/chap-%E7%BD%91%E7%BB%9C%E4%BC%98%E5%8C%96%E4%B8%8E%E6%AD%A3%E5%88%99%E5%8C%96.pptx'>ppt</a>] (updated 2019-4-4)</li><li><a href='chap-%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%9C%BA%E5%88%B6%E4%B8%8E%E5%A4%96%E9%83%A8%E8%AE%B0%E5%BF%86.pdf'>注意力机制与外部记忆</a> [<a href='./ppt/chap-%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%9C%BA%E5%88%B6%E4%B8%8E%E5%A4%96%E9%83%A8%E8%AE%B0%E5%BF%86.pptx'>ppt</a>] (updated 2019-4-4)</li><li><a href='chap-%E6%97%A0%E7%9B%91%E7%9D%A3%E5%AD%A6%E4%B9%A0.pdf'>无监督学习</a> [<a href='./ppt/chap-%E6%97%A0%E7%9B%91%E7%9D%A3%E5%AD%A6%E4%B9%A0.pptx'>ppt</a>] (updated 2019-4-4)</li><li><a href='chap-%E6%A8%A1%E5%9E%8B%E7%8B%AC%E7%AB%8B%E7%9A%84%E5%AD%A6%E4%B9%A0%E6%96%B9%E5%BC%8F.pdf'>模型独立的学习方式</a> (updated 2019-4-4)</li><li><a href='chap-%E6%A6%82%E7%8E%87%E5%9B%BE%E6%A8%A1%E5%9E%8B.pdf'>概率图模型</a> [<a href='./ppt/chap-%E6%A6%82%E7%8E%87%E5%9B%BE%E6%A8%A1%E5%9E%8B.pptx'>ppt</a>] (updated 2019-4-4)</li><li><a href='chap-%E6%B7%B1%E5%BA%A6%E4%BF%A1%E5%BF%B5%E7%BD%91%E7%BB%9C.pdf'>深度信念网络</a> [<a href='./ppt/chap-%E6%B7%B1%E5%BA%A6%E4%BF%A1%E5%BF%B5%E7%BD%91%E7%BB%9C.pptx'>ppt</a>] (updated 2019-4-4)</li><li><a href='chap-%E6%B7%B1%E5%BA%A6%E7%94%9F%E6%88%90%E6%A8%A1%E5%9E%8B.pdf'>深度生成模型</a>[<a href='./ppt/chap-%E6%B7%B1%E5%BA%A6%E7%94%9F%E6%88%90%E6%A8%A1%E5%9E%8B.pptx'>ppt</a>] (updated 2019-4-4)</li><li><a href='chap-%E6%B7%B1%E5%BA%A6%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0.pdf'>深度强化学习</a> [<a href='./ppt/chap-%E6%B7%B1%E5%BA%A6%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0.pptx'>ppt</a>] (updated 2019-4-4)</li><li><a href='chap-%E5%BA%8F%E5%88%97%E7%94%9F%E6%88%90%E6%A8%A1%E5%9E%8B.pdf'>序列生成模型</a> (updated 2019-4-4) 一个过时版本:<a href='chap-%E8%AF%AD%E8%A8%80%E6%A8%A1%E5%9E%8B%E4%B8%8E%E8%AF%8D%E5%B5%8C%E5%85%A5.pdf'>词嵌入与语言模型</a></li><li><a href='chap-%E6%95%B0%E5%AD%A6%E5%9F%BA%E7%A1%80.pdf'>数学基础</a> (updated 2019-4-4)</li></ol><h2><a name='header-n48' class='md-header-anchor '></a>反馈意见</h2><p>如果您有任何意见、评论以及建议(先确认最新版本中是否已经修正),请通过GitHub的<a href='https://github.com/nndl/nndl.github.io/issues'>Issues</a>页面进行反馈。如果错误比较重要,我会在本书中进行致谢。</p><p>反馈意见包括但不限于:(因为分开排版关系,页码错误请忽略。)</p><ul><li>打字错误</li><li>描述错误: 比如“感知器是非线性分类器”</li><li>评论</li><li>建议</li></ul><p>非常感谢!</p><p>致谢列表:感谢王利锋、张钧瑞、李浩、胡可鑫、韦鹏辉、徐国海、侯宇蓬、任强、王少敬等同学指出书中的错误。</p><p> </p><h2><a name='header-n63' class='md-header-anchor '></a>推荐课程</h2><h4><a name='header-n64' class='md-header-anchor '></a>Stat212b:Topics Course on Deep Learning</h4><p><a href='http://joanbruna.github.io/stat212b/'>http://joanbruna.github.io/stat212b/</a></p><p>加州大学伯克利分校统计系Joan Bruna(Yann LeCun博士后)
以统计的角度讲解DL。</p><h4><a name='header-n67' class='md-header-anchor '></a>CS224d: Deep Learning for Natural Language Processing</h4><p><a href='http://cs224d.stanford.edu/'>http://cs224d.stanford.edu/</a></p><p>斯坦福大学 Richard Socher
主要讲解自然语言处理领域的各种深度学习模型</p><h4><a name='header-n70' class='md-header-anchor '></a>CS231n:Convolutional Neural Networks for Visual Recognition</h4><p><a href='http://cs231n.stanford.edu/'>http://cs231n.stanford.edu/</a></p><p>斯坦福大学 Fei-Fei Li Andrej Karpathy
主要讲解CNN、RNN在图像领域的应用</p><p> </p><h2><a name='header-n74' class='md-header-anchor '></a>致谢</h2><p>本页面由<a href='http://www.typora.io/'>Typora</a>编辑。</p><p> </p></div>
</body>
</html>