This repository has been archived by the owner on Sep 16, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 429
/
image_reader.py
180 lines (146 loc) · 6.99 KB
/
image_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import numpy as np
import tensorflow as tf
def image_scaling(img, label):
"""
Randomly scales the images between 0.5 to 1.5 times the original size.
Args:
img: Training image to scale.
label: Segmentation mask to scale.
"""
scale = tf.random_uniform([1], minval=0.5, maxval=1.5, dtype=tf.float32, seed=None)
h_new = tf.to_int32(tf.multiply(tf.to_float(tf.shape(img)[0]), scale))
w_new = tf.to_int32(tf.multiply(tf.to_float(tf.shape(img)[1]), scale))
new_shape = tf.squeeze(tf.stack([h_new, w_new]), squeeze_dims=[1])
img = tf.image.resize_images(img, new_shape)
label = tf.image.resize_nearest_neighbor(tf.expand_dims(label, 0), new_shape)
label = tf.squeeze(label, squeeze_dims=[0])
return img, label
def image_mirroring(img, label):
"""
Randomly mirrors the images.
Args:
img: Training image to mirror.
label: Segmentation mask to mirror.
"""
distort_left_right_random = tf.random_uniform([1], 0, 1.0, dtype=tf.float32)[0]
mirror = tf.less(tf.stack([1.0, distort_left_right_random, 1.0]), 0.5)
mirror = tf.boolean_mask([0, 1, 2], mirror)
img = tf.reverse(img, mirror)
label = tf.reverse(label, mirror)
return img, label
def random_crop_and_pad_image_and_labels(image, label, crop_h, crop_w, ignore_label=255):
"""
Randomly crop and pads the input images.
Args:
image: Training image to crop/ pad.
label: Segmentation mask to crop/ pad.
crop_h: Height of cropped segment.
crop_w: Width of cropped segment.
ignore_label: Label to ignore during the training.
"""
label = tf.cast(label, dtype=tf.float32)
label = label - ignore_label # Needs to be subtracted and later added due to 0 padding.
combined = tf.concat(axis=2, values=[image, label])
image_shape = tf.shape(image)
combined_pad = tf.image.pad_to_bounding_box(combined, 0, 0, tf.maximum(crop_h, image_shape[0]), tf.maximum(crop_w, image_shape[1]))
last_image_dim = tf.shape(image)[-1]
last_label_dim = tf.shape(label)[-1]
combined_crop = tf.random_crop(combined_pad, [crop_h,crop_w,4])
img_crop = combined_crop[:, :, :last_image_dim]
label_crop = combined_crop[:, :, last_image_dim:]
label_crop = label_crop + ignore_label
label_crop = tf.cast(label_crop, dtype=tf.uint8)
# Set static shape so that tensorflow knows shape at compile time.
img_crop.set_shape((crop_h, crop_w, 3))
label_crop.set_shape((crop_h,crop_w, 1))
return img_crop, label_crop
def read_labeled_image_list(data_dir, data_list):
"""Reads txt file containing paths to images and ground truth masks.
Args:
data_dir: path to the directory with images and masks.
data_list: path to the file with lines of the form '/path/to/image /path/to/mask'.
Returns:
Two lists with all file names for images and masks, respectively.
"""
f = open(data_list, 'r')
images = []
masks = []
for line in f:
try:
image, mask = line.strip("\n").split(' ')
except ValueError: # Adhoc for test.
image = mask = line.strip("\n")
images.append(data_dir + image)
masks.append(data_dir + mask)
return images, masks
def read_images_from_disk(input_queue, input_size, random_scale, random_mirror, ignore_label, img_mean): # optional pre-processing arguments
"""Read one image and its corresponding mask with optional pre-processing.
Args:
input_queue: tf queue with paths to the image and its mask.
input_size: a tuple with (height, width) values.
If not given, return images of original size.
random_scale: whether to randomly scale the images prior
to random crop.
random_mirror: whether to randomly mirror the images prior
to random crop.
ignore_label: index of label to ignore during the training.
img_mean: vector of mean colour values.
Returns:
Two tensors: the decoded image and its mask.
"""
img_contents = tf.read_file(input_queue[0])
label_contents = tf.read_file(input_queue[1])
img = tf.image.decode_jpeg(img_contents, channels=3)
img_r, img_g, img_b = tf.split(axis=2, num_or_size_splits=3, value=img)
img = tf.cast(tf.concat(axis=2, values=[img_b, img_g, img_r]), dtype=tf.float32)
# Extract mean.
img -= img_mean
label = tf.image.decode_png(label_contents, channels=1)
if input_size is not None:
h, w = input_size
# Randomly scale the images and labels.
if random_scale:
img, label = image_scaling(img, label)
# Randomly mirror the images and labels.
if random_mirror:
img, label = image_mirroring(img, label)
# Randomly crops the images and labels.
img, label = random_crop_and_pad_image_and_labels(img, label, h, w, ignore_label)
return img, label
class ImageReader(object):
'''Generic ImageReader which reads images and corresponding segmentation
masks from the disk, and enqueues them into a TensorFlow queue.
'''
def __init__(self, data_dir, data_list, input_size,
random_scale, random_mirror, ignore_label, img_mean, coord):
'''Initialise an ImageReader.
Args:
data_dir: path to the directory with images and masks.
data_list: path to the file with lines of the form '/path/to/image /path/to/mask'.
input_size: a tuple with (height, width) values, to which all the images will be resized.
random_scale: whether to randomly scale the images prior to random crop.
random_mirror: whether to randomly mirror the images prior to random crop.
ignore_label: index of label to ignore during the training.
img_mean: vector of mean colour values.
coord: TensorFlow queue coordinator.
'''
self.data_dir = data_dir
self.data_list = data_list
self.input_size = input_size
self.coord = coord
self.image_list, self.label_list = read_labeled_image_list(self.data_dir, self.data_list)
self.images = tf.convert_to_tensor(self.image_list, dtype=tf.string)
self.labels = tf.convert_to_tensor(self.label_list, dtype=tf.string)
self.queue = tf.train.slice_input_producer([self.images, self.labels],
shuffle=input_size is not None) # not shuffling if it is val
self.image, self.label = read_images_from_disk(self.queue, self.input_size, random_scale, random_mirror, ignore_label, img_mean)
def dequeue(self, num_elements):
'''Pack images and labels into a batch.
Args:
num_elements: the batch size.
Returns:
Two tensors of size (batch_size, h, w, {3, 1}) for images and masks.'''
image_batch, label_batch = tf.train.batch([self.image, self.label],
num_elements)
return image_batch, label_batch