Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Changes \upsilon -> v in Docs #173

Merged
merged 1 commit into from
Dec 25, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions docs/src/modules/barotropicqgql.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,13 +14,13 @@ where overline above denotes a zonal mean, $\overline{\phi}(y, t) = \int \phi(x,
- Constantinou, N. C., Farrell, B. F., and Ioannou, P. J. (2014). [Emergence and equilibration of jets in beta-plane turbulence: applications of Stochastic Structural Stability Theory.](http://doi.org/10.1175/JAS-D-13-076.1) *J. Atmos. Sci.*, **71 (5)**, 1818-1842.


As in the [BarotropicQG module](barotropicqg.md), the flow is obtained through a streamfunction $\psi$ as $(u, \upsilon) = (-\partial_y\psi, \partial_x\psi)$. All flow fields can be obtained from the quasi-geostrophic potential vorticity (QGPV). Here the QGPV is
As in the [BarotropicQG module](barotropicqg.md), the flow is obtained through a streamfunction $\psi$ as $(u, v) = (-\partial_y\psi, \partial_x\psi)$. All flow fields can be obtained from the quasi-geostrophic potential vorticity (QGPV). Here the QGPV is

$$\underbrace{f_0 + \beta y}_{\text{planetary PV}} + \underbrace{(\partial_x \upsilon
$$\underbrace{f_0 + \beta y}_{\text{planetary PV}} + \underbrace{(\partial_x v
- \partial_y u)}_{\text{relative vorticity}} +
\underbrace{\frac{f_0 h}{H}}_{\text{topographic PV}}.$$

The dynamical variable is the component of the vorticity of the flow normal to the plane of motion, $\zeta\equiv \partial_x \upsilon- \partial_y u = \nabla^2\psi$. Also, we denote the topographic PV with $\eta\equiv f_0 h/H$. After we apply the eddy-mean flow decomposition above, the QGPV dynamics are:
The dynamical variable is the component of the vorticity of the flow normal to the plane of motion, $\zeta\equiv \partial_x v- \partial_y u = \nabla^2\psi$. Also, we denote the topographic PV with $\eta\equiv f_0 h/H$. After we apply the eddy-mean flow decomposition above, the QGPV dynamics are:

$$\partial_t \overline{\zeta} + \mathsf{J}(\overline{\psi}, \underbrace{\overline{\zeta} + \overline{\eta}}_{\equiv \overline{q}}) + \overline{\mathsf{J}(\psi', \underbrace{\zeta' + \eta'}_{\equiv q'})} = \underbrace{-\left[\mu + \nu(-1)^{n_\nu} \nabla^{2n_\nu}
\right] \overline{\zeta} }_{\textrm{dissipation}} \ .$$
Expand All @@ -47,7 +47,7 @@ Thus:

$$\mathcal{L} = \beta\frac{\mathrm{i}k_x}{k^2} - \mu - \nu k^{2n_\nu}\ ,$$
$$\mathcal{N}(\widehat{\zeta}) = - \mathrm{i}k_x \mathrm{FFT}(u q)^{\textrm{QL}}-
\mathrm{i}k_y \mathrm{FFT}(\upsilon q)^{\textrm{QL}}\ .$$
\mathrm{i}k_y \mathrm{FFT}(v q)^{\textrm{QL}}\ .$$


## Examples
Expand Down
2 changes: 1 addition & 1 deletion docs/src/modules/multilayerqg.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@

This module solves the layered quasi-geostrophic equations on a beta-plane of variable fluid
depth ``H - h(x, y)``. The flow in each layer is obtained through a streamfunction ``\psi_j`` as
``(u_j, \upsilon_j) = (-\partial_y \psi_j, \partial_x \psi_j)``, ``j = 1, \dots, n``, where ``n``
``(u_j, v_j) = (-\partial_y \psi_j, \partial_x \psi_j)``, ``j = 1, \dots, n``, where ``n``
is the number of fluid layers.

The QGPV in each layer is
Expand Down
6 changes: 3 additions & 3 deletions docs/src/modules/singlelayerqg.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,11 @@
### Basic Equations

This module solves the barotropic or equivalent barotropic quasi-geostrophic vorticity equation
on a beta-plane of variable fluid depth ``H - h(x, y)``. The flow is obtained through a streamfunction ``\psi`` as ``(u, \upsilon) = (-\partial_y \psi, \partial_x \psi)``. All flow
on a beta-plane of variable fluid depth ``H - h(x, y)``. The flow is obtained through a streamfunction ``\psi`` as ``(u, v) = (-\partial_y \psi, \partial_x \psi)``. All flow
fields can be obtained from the quasi-geostrophic potential vorticity (QGPV). Here the QGPV is

```math
\underbrace{f_0 + \beta y}_{\text{planetary PV}} + \underbrace{\partial_x \upsilon
\underbrace{f_0 + \beta y}_{\text{planetary PV}} + \underbrace{\partial_x v
- \partial_y u}_{\text{relative vorticity}} - \!\!
\underbrace{\frac{1}{\ell^2} \psi}_{\text{vortex stretching}} \!\! +
\underbrace{\frac{f_0 h}{H}}_{\text{topographic PV}} \ ,
Expand Down Expand Up @@ -64,7 +64,7 @@ Thus:
```math
\begin{aligned}
\mathcal{L} & = \beta \frac{\mathrm{i} k_x}{k^2 + 1/\ell^2} - \mu - \nu k^{2n_\nu} \ , \\
\mathcal{N}(\widehat{q}) & = - \mathrm{i} k_x \mathrm{FFT}[u (q+\eta)] - \mathrm{i} k_y \mathrm{FFT}[\upsilon (q+\eta)] \ .
\mathcal{N}(\widehat{q}) & = - \mathrm{i} k_x \mathrm{FFT}[u (q+\eta)] - \mathrm{i} k_y \mathrm{FFT}[v (q+\eta)] \ .
\end{aligned}
```

Expand Down
6 changes: 3 additions & 3 deletions docs/src/modules/surfaceqg.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ buoyancy $b_s = b(x, y, z=0)$, as described in Capet et al., 2008. The buoyancy
velocity at the surface are related through a streamfunction $\psi$ via:

```math
(u_s, \upsilon_s, b_s) = (-\partial_y \psi, \partial_x \psi, -\partial_z \psi) .
(u_s, v_s, b_s) = (-\partial_y \psi, \partial_x \psi, -\partial_z \psi) .
```

The SQG model evolves the surface buoyancy,
Expand Down Expand Up @@ -46,9 +46,9 @@ In doing so the Jacobian is computed in the conservative form: $\mathsf{J}(f,g)
Thus:
```math
\begin{aligned}
\widehat{u} &= \frac{\mathrm{i} k_y}{k} \widehat{b_s}, \qquad \widehat{\upsilon} = -\frac{\mathrm{i} k_x}{k} \widehat{b_s}, \\
\widehat{u} &= \frac{\mathrm{i} k_y}{k} \widehat{b_s}, \qquad \widehat{v} = -\frac{\mathrm{i} k_x}{k} \widehat{b_s}, \\
\mathcal{L} & = - \nu k^{2n_\nu},\\
\mathcal{N}(\widehat{b_s}) & = - \mathrm{i} k_x \mathrm{FFT}(u b) - \mathrm{i} k_y \mathrm{FFT}(\upsilon b) .
\mathcal{N}(\widehat{b_s}) & = - \mathrm{i} k_x \mathrm{FFT}(u b) - \mathrm{i} k_y \mathrm{FFT}(v b) .
\end{aligned}
```

Expand Down
12 changes: 6 additions & 6 deletions docs/src/modules/twodnavierstokes.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,9 @@
### Basic Equations

This module solves two-dimensional incompressible turbulence. The flow is given
through a streamfunction $\psi$ as $(u,\upsilon) = (-\partial_y\psi, \partial_x\psi)$.
through a streamfunction $\psi$ as $(u,v) = (-\partial_y\psi, \partial_x\psi)$.
The dynamical variable used here is the component of the vorticity of the flow
normal to the plane of motion, $\zeta=\partial_x \upsilon- \partial_y u = \nabla^2\psi$.
normal to the plane of motion, $\zeta=\partial_x v- \partial_y u = \nabla^2\psi$.
The equation solved by the module is:

$$\partial_t \zeta + \mathsf{J}(\psi, \zeta) = \underbrace{-\left[\mu(-1)^{n_\mu} \nabla^{2n_\mu}
Expand All @@ -31,7 +31,7 @@ Thus:

$$\mathcal{L} = -\mu k^{-2n_\mu} - \nu k^{2n_\nu}\ ,$$
$$\mathcal{N}(\widehat{\zeta}) = - \mathrm{i}k_x \mathrm{FFT}(u \zeta)-
\mathrm{i}k_y \mathrm{FFT}(\upsilon \zeta) + \widehat{f}\ .$$
\mathrm{i}k_y \mathrm{FFT}(v \zeta) + \widehat{f}\ .$$


### AbstractTypes and Functions
Expand All @@ -53,11 +53,11 @@ For the forced case ($f\ne 0$) parameters AbstractType is build with `ForcedPara
For the unforced case ($f=0$) variables AbstractType is build with `Vars` and it includes:
- `zeta`: Array of Floats; relative vorticity.
- `u`: Array of Floats; $x$-velocity, $u$.
- `v`: Array of Floats; $y$-velocity, $\upsilon$.
- `v`: Array of Floats; $y$-velocity, $v$.
- `sol`: Array of Complex; the solution, $\widehat{\zeta}$.
- `zetah`: Array of Complex; the Fourier transform $\widehat{\zeta}$.
- `uh`: Array of Complex; the Fourier transform $\widehat{u}$.
- `vh`: Array of Complex; the Fourier transform $\widehat{\upsilon}$.
- `vh`: Array of Complex; the Fourier transform $\widehat{v}$.

For the forced case ($f\ne 0$) variables AbstractType is build with `ForcedVars`. It includes all variables in `Vars` and additionally:
- `Fh`: Array of Complex; the Fourier transform $\widehat{f}$.
Expand All @@ -73,7 +73,7 @@ The nonlinear term $\mathcal{N}(\widehat{\zeta})$ is computed via functions:

- `calcN_forced!`: computes $- \widehat{\mathsf{J}(\psi, \zeta)}$ via `calcN_advection!` and then adds to it the forcing $\widehat{f}$ computed via `calcF!` function. Also saves the solution $\widehat{\zeta}$ of the previous time-step in array `prevsol`.

- `updatevars!`: uses `sol` to compute $\zeta$, $u$, $\upsilon$, $\widehat{u}$, and $\widehat{\upsilon}$ and stores them into corresponding arrays of `Vars`/`ForcedVars`.
- `updatevars!`: uses `sol` to compute $\zeta$, $u$, $v$, $\widehat{u}$, and $\widehat{v}$ and stores them into corresponding arrays of `Vars`/`ForcedVars`.


## Examples
Expand Down
4 changes: 2 additions & 2 deletions src/multilayerqg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -612,14 +612,14 @@ verticalfluxes``_{3/2},...,``verticalfluxes``_{n-1/2}``, where ``n`` is the tota

The lateral eddy fluxes whithin the ``j``-th fluid layer are
```math
\\textrm{lateralfluxes}_j = \\frac{H_j}{H} \\int U_j \\, \\upsilon_j \\, \\partial_y u_j
\\textrm{lateralfluxes}_j = \\frac{H_j}{H} \\int U_j \\, v_j \\, \\partial_y u_j
\\frac{\\mathrm{d}^2 \\boldsymbol{x}}{L_x L_y} \\ , \\quad j = 1, \\dots, n \\ ,
```
while the vertical eddy fluxes at the ``j+1/2``-th fluid interface (i.e., interface between
the ``j``-th and ``(j+1)``-th fluid layer) are
```math
\\textrm{verticalfluxes}_{j+1/2} = \\int \\frac{f_0^2}{g'_{j+1/2} H} (U_j - U_{j+1}) \\,
\\upsilon_{j+1} \\, \\psi_{j} \\frac{\\mathrm{d}^2 \\boldsymbol{x}}{L_x L_y} \\ , \\quad
v_{j+1} \\, \\psi_{j} \\frac{\\mathrm{d}^2 \\boldsymbol{x}}{L_x L_y} \\ , \\quad
j = 1 , \\dots , n-1.
```
"""
Expand Down