forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
base.py
342 lines (287 loc) · 11.7 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
"""
Generalized Linear models.
"""
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Fabian Pedregosa <fabian.pedregosa@inria.fr>
# Olivier Grisel <olivier.grisel@ensta.org>
# Vincent Michel <vincent.michel@inria.fr>
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Mathieu Blondel <mathieu@mblondel.org>
#
# License: BSD Style.
from abc import ABCMeta, abstractmethod
import numpy as np
import scipy.sparse as sp
from scipy import linalg
import scipy.sparse.linalg as sp_linalg
from ..externals.joblib import Parallel, delayed
from ..base import BaseEstimator
from ..base import RegressorMixin
from ..utils.extmath import safe_sparse_dot
from ..utils import array2d, as_float_array, safe_asarray
from ..utils.fixes import lsqr
###
### TODO: intercept for all models
### We should define a common function to center data instead of
### repeating the same code inside each fit method.
### TODO: bayesian_ridge_regression and bayesian_regression_ard
### should be squashed into its respective objects.
def center_data(X, y, fit_intercept, normalize=False, copy=True):
"""
Centers data to have mean zero along axis 0. This is here because
nearly all linear models will want their data to be centered.
"""
X = as_float_array(X, copy)
if fit_intercept:
if sp.issparse(X):
X_mean = np.zeros(X.shape[1])
X_std = np.ones(X.shape[1])
else:
X_mean = X.mean(axis=0)
X -= X_mean
if normalize:
X_std = np.sqrt(np.sum(X ** 2, axis=0))
X_std[X_std == 0] = 1
X /= X_std
else:
X_std = np.ones(X.shape[1])
y_mean = y.mean(axis=0)
y = y - y_mean
else:
X_mean = np.zeros(X.shape[1])
X_std = np.ones(X.shape[1])
y_mean = 0. if y.ndim == 1 else np.zeros(y.shape[1], dtype=X.dtype)
return X, y, X_mean, y_mean, X_std
class LinearModel(BaseEstimator, RegressorMixin):
"""Base class for Linear Models"""
def decision_function(self, X):
"""Decision function of the linear model
Parameters
----------
X : numpy array of shape [n_samples, n_features]
Returns
-------
C : array, shape = [n_samples]
Returns predicted values.
"""
X = safe_asarray(X)
return safe_sparse_dot(X, self.coef_.T) + self.intercept_
def predict(self, X):
"""Predict using the linear model
Parameters
----------
X : numpy array of shape [n_samples, n_features]
Returns
-------
C : array, shape = [n_samples]
Returns predicted values.
"""
return self.decision_function(X)
_center_data = staticmethod(center_data)
def _set_intercept(self, X_mean, y_mean, X_std):
"""Set the intercept_
"""
if self.fit_intercept:
self.coef_ = self.coef_ / X_std
self.intercept_ = y_mean - np.dot(X_mean, self.coef_.T)
else:
self.intercept_ = 0
class LinearRegression(LinearModel):
"""
Ordinary least squares Linear Regression.
Attributes
----------
`coef_` : array
Estimated coefficients for the linear regression problem.
`intercept_` : array
Independent term in the linear model.
Parameters
----------
fit_intercept : boolean, optional
wether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(e.g. data is expected to be already centered).
normalize : boolean, optional
If True, the regressors X are normalized
Notes
-----
From the implementation point of view, this is just plain Ordinary
Least Squares (numpy.linalg.lstsq) wrapped as a predictor object.
"""
def __init__(self, fit_intercept=True, normalize=False, copy_X=True):
self.fit_intercept = fit_intercept
self.normalize = normalize
self.copy_X = copy_X
def fit(self, X, y, n_jobs=1):
"""
Fit linear model.
Parameters
----------
X : numpy array or sparse matrix of shape [n_samples,n_features]
Training data
y : numpy array of shape [n_samples, n_responses]
Target values
n_jobs : The number of jobs to use for the computation.
If -1 all CPUs are used. This will only provide speedup for
n_response > 1 and sufficient large problems
Returns
-------
self : returns an instance of self.
"""
X = safe_asarray(X)
y = np.asarray(y)
X, y, X_mean, y_mean, X_std = self._center_data(X, y,
self.fit_intercept, self.normalize, self.copy_X)
if sp.issparse(X):
if y.ndim < 2:
out = lsqr(X, y)
self.coef_ = out[0]
self.residues_ = out[3]
else:
# sparse_lstsq cannot handle y with shape (M, K)
outs = Parallel(n_jobs=n_jobs)(delayed(lsqr)
(X, y[:, j].ravel()) for j in range(y.shape[1]))
self.coef_ = np.vstack(out[0] for out in outs)
self.residues_ = np.vstack(out[3] for out in outs)
else:
self.coef_, self.residues_, self.rank_, self.singular_ = \
linalg.lstsq(X, y)
self.coef_ = self.coef_.T
self._set_intercept(X_mean, y_mean, X_std)
return self
##
## Stochastic Gradient Descent (SGD) abstract base class
##
class BaseSGD(BaseEstimator):
"""Base class for dense and sparse SGD."""
__metaclass__ = ABCMeta
def __init__(self, loss, penalty='l2', alpha=0.0001,
rho=0.85, fit_intercept=True, n_iter=5, shuffle=False,
verbose=0, seed=0, learning_rate="optimal", eta0=0.0,
power_t=0.5, warm_start=False):
self.loss = str(loss)
self.penalty = str(penalty).lower()
self._set_loss_function(self.loss)
self._set_penalty_type(self.penalty)
self.alpha = float(alpha)
if self.alpha < 0.0:
raise ValueError("alpha must be greater than zero")
self.rho = float(rho)
if self.rho < 0.0 or self.rho > 1.0:
raise ValueError("rho must be in [0, 1]")
self.fit_intercept = bool(fit_intercept)
self.n_iter = int(n_iter)
if self.n_iter <= 0:
raise ValueError("n_iter must be greater than zero")
if not isinstance(shuffle, bool):
raise ValueError("shuffle must be either True or False")
self.shuffle = bool(shuffle)
self.seed = seed
self.verbose = int(verbose)
self.learning_rate = str(learning_rate)
self._set_learning_rate(self.learning_rate)
self.eta0 = float(eta0)
self.power_t = float(power_t)
if self.learning_rate != "optimal":
if eta0 <= 0.0:
raise ValueError("eta0 must be greater than 0.0")
self.coef_ = None
self.warm_start = warm_start
self._init_t()
@abstractmethod
def fit(self, X, y):
"""Fit model."""
@abstractmethod
def predict(self, X):
"""Predict using model."""
def _init_t(self):
self.t_ = 1.0
if self.learning_rate == "optimal":
typw = np.sqrt(1.0 / np.sqrt(self.alpha))
# computing eta0, the initial learning rate
eta0 = typw / max(1.0, self.loss_function.dloss(-typw, 1.0))
# initialize t such that eta at first example equals eta0
self.t_ = 1.0 / (eta0 * self.alpha)
def _set_learning_rate(self, learning_rate):
learning_rate_codes = {"constant": 1, "optimal": 2, "invscaling": 3}
try:
self.learning_rate_code = learning_rate_codes[learning_rate]
except KeyError:
raise ValueError("learning rate %s"
"is not supported. " % learning_rate)
def _set_loss_function(self, loss):
"""Get concrete LossFunction"""
raise NotImplementedError("BaseSGD is an abstract class.")
def _set_penalty_type(self, penalty):
penalty_types = {"none": 0, "l2": 2, "l1": 1, "elasticnet": 3}
try:
self.penalty_type = penalty_types[penalty]
except KeyError:
raise ValueError("Penalty %s is not supported. " % penalty)
def _validate_sample_weight(self, sample_weight, n_samples):
"""Set the sample weight array."""
if sample_weight == None:
# uniform sample weights
sample_weight = np.ones(n_samples, dtype=np.float64, order='C')
else:
# user-provided array
sample_weight = np.asarray(sample_weight, dtype=np.float64,
order="C")
if sample_weight.shape[0] != n_samples:
raise ValueError("Shapes of X and sample_weight do not match.")
return sample_weight
def _set_coef(self, coef_):
"""Make sure that coef_ is fortran-style and 2d.
Fortran-style memory layout is needed to ensure that computing
the dot product between input ``X`` and ``coef_`` does not trigger
a memory copy.
"""
self.coef_ = np.asfortranarray(array2d(coef_))
def _allocate_parameter_mem(self, n_classes, n_features, coef_init=None,
intercept_init=None):
"""Allocate mem for parameters; initialize if provided."""
if n_classes > 2:
# allocate coef_ for multi-class
if coef_init is not None:
coef_init = np.asarray(coef_init, order="C")
if coef_init.shape != (n_classes, n_features):
raise ValueError("Provided coef_ does not match dataset. ")
self.coef_ = coef_init
else:
self.coef_ = np.zeros((n_classes, n_features),
dtype=np.float64, order="C")
# allocate intercept_ for multi-class
if intercept_init is not None:
intercept_init = np.asarray(intercept_init, order="C")
if intercept_init.shape != (n_classes, ):
raise ValueError("Provided intercept_init " \
"does not match dataset.")
self.intercept_ = intercept_init
else:
self.intercept_ = np.zeros(n_classes, dtype=np.float64,
order="C")
else:
# allocate coef_ for binary problem
if coef_init is not None:
coef_init = np.asarray(coef_init, dtype=np.float64,
order="C")
coef_init = coef_init.ravel()
if coef_init.shape != (n_features,):
raise ValueError("Provided coef_init does not " \
"match dataset.")
self.coef_ = coef_init
else:
self.coef_ = np.zeros(n_features, dtype=np.float64, order="C")
# allocate intercept_ for binary problem
if intercept_init is not None:
intercept_init = np.asarray(intercept_init, dtype=np.float64)
if intercept_init.shape != (1,) and intercept_init.shape != ():
raise ValueError("Provided intercept_init " \
"does not match dataset.")
self.intercept_ = intercept_init.reshape(1,)
else:
self.intercept_ = np.zeros(1, dtype=np.float64, order="C")
def _check_fit_data(self, X, y):
n_samples, _ = X.shape
if n_samples != y.shape[0]:
raise ValueError("Shapes of X and y do not match.")