forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sparse_pca.py
264 lines (215 loc) · 8.69 KB
/
sparse_pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
"""Matrix factorization with Sparse PCA"""
# Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort
# License: BSD 3 clause
import numpy as np
from ..utils import check_random_state, array2d
from ..linear_model import ridge_regression
from ..base import BaseEstimator, TransformerMixin
from .dict_learning import dict_learning, dict_learning_online
class SparsePCA(BaseEstimator, TransformerMixin):
"""Sparse Principal Components Analysis (SparsePCA)
Finds the set of sparse components that can optimally reconstruct
the data. The amount of sparseness is controllable by the coefficient
of the L1 penalty, given by the parameter alpha.
Parameters
----------
n_components : int,
Number of sparse atoms to extract.
alpha : float,
Sparsity controlling parameter. Higher values lead to sparser
components.
ridge_alpha : float,
Amount of ridge shrinkage to apply in order to improve
conditioning when calling the transform method.
max_iter : int,
Maximum number of iterations to perform.
tol : float,
Tolerance for the stopping condition.
method : {'lars', 'cd'}
lars: uses the least angle regression method to solve the lasso problem
(linear_model.lars_path)
cd: uses the coordinate descent method to compute the
Lasso solution (linear_model.Lasso). Lars will be faster if
the estimated components are sparse.
n_jobs : int,
Number of parallel jobs to run.
U_init : array of shape (n_samples, n_components),
Initial values for the loadings for warm restart scenarios.
V_init : array of shape (n_components, n_features),
Initial values for the components for warm restart scenarios.
verbose :
Degree of verbosity of the printed output.
random_state : int or RandomState
Pseudo number generator state used for random sampling.
Attributes
----------
`components_` : array, [n_components, n_features]
Sparse components extracted from the data.
`error_` : array
Vector of errors at each iteration.
See also
--------
PCA
MiniBatchSparsePCA
DictionaryLearning
"""
def __init__(self, n_components=None, alpha=1, ridge_alpha=0.01,
max_iter=1000, tol=1e-8, method='lars', n_jobs=1, U_init=None,
V_init=None, verbose=False, random_state=None):
self.n_components = n_components
self.alpha = alpha
self.ridge_alpha = ridge_alpha
self.max_iter = max_iter
self.tol = tol
self.method = method
self.n_jobs = n_jobs
self.U_init = U_init
self.V_init = V_init
self.verbose = verbose
self.random_state = random_state
def fit(self, X, y=None):
"""Fit the model from data in X.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
self : object
Returns the instance itself.
"""
random_state = check_random_state(self.random_state)
X = array2d(X)
if self.n_components is None:
n_components = X.shape[1]
else:
n_components = self.n_components
code_init = self.V_init.T if self.V_init is not None else None
dict_init = self.U_init.T if self.U_init is not None else None
Vt, _, E = dict_learning(X.T, n_components, self.alpha,
tol=self.tol, max_iter=self.max_iter,
method=self.method, n_jobs=self.n_jobs,
verbose=self.verbose,
random_state=random_state,
code_init=code_init,
dict_init=dict_init)
self.components_ = Vt.T
self.error_ = E
return self
def transform(self, X, ridge_alpha=None):
"""Least Squares projection of the data onto the sparse components.
To avoid instability issues in case the system is under-determined,
regularization can be applied (Ridge regression) via the
`ridge_alpha` parameter.
Note that Sparse PCA components orthogonality is not enforced as in PCA
hence one cannot use a simple linear projection.
Parameters
----------
X: array of shape (n_samples, n_features)
Test data to be transformed, must have the same number of
features as the data used to train the model.
ridge_alpha: float, default: 0.01
Amount of ridge shrinkage to apply in order to improve
conditioning.
Returns
-------
X_new array, shape (n_samples, n_components)
Transformed data.
"""
ridge_alpha = self.ridge_alpha if ridge_alpha is None else ridge_alpha
U = ridge_regression(self.components_.T, X.T, ridge_alpha,
solver='dense_cholesky')
s = np.sqrt((U ** 2).sum(axis=0))
s[s == 0] = 1
U /= s
return U
class MiniBatchSparsePCA(SparsePCA):
"""Mini-batch Sparse Principal Components Analysis
Finds the set of sparse components that can optimally reconstruct
the data. The amount of sparseness is controllable by the coefficient
of the L1 penalty, given by the parameter alpha.
Parameters
----------
n_components : int,
number of sparse atoms to extract
alpha : int,
Sparsity controlling parameter. Higher values lead to sparser
components.
ridge_alpha : float,
Amount of ridge shrinkage to apply in order to improve
conditioning when calling the transform method.
n_iter : int,
number of iterations to perform for each mini batch
callback : callable,
callable that gets invoked every five iterations
batch_size : int,
the number of features to take in each mini batch
verbose :
degree of output the procedure will print
shuffle : boolean,
whether to shuffle the data before splitting it in batches
n_jobs : int,
number of parallel jobs to run, or -1 to autodetect.
method : {'lars', 'cd'}
lars: uses the least angle regression method to solve the lasso problem
(linear_model.lars_path)
cd: uses the coordinate descent method to compute the
Lasso solution (linear_model.Lasso). Lars will be faster if
the estimated components are sparse.
random_state : int or RandomState
Pseudo number generator state used for random sampling.
Attributes
----------
`components_` : array, [n_components, n_features]
Sparse components extracted from the data.
`error_` : array
Vector of errors at each iteration.
See also
--------
PCA
SparsePCA
DictionaryLearning
"""
def __init__(self, n_components=None, alpha=1, ridge_alpha=0.01,
n_iter=100, callback=None, batch_size=3, verbose=False,
shuffle=True, n_jobs=1, method='lars', random_state=None):
self.n_components = n_components
self.alpha = alpha
self.ridge_alpha = ridge_alpha
self.n_iter = n_iter
self.callback = callback
self.batch_size = batch_size
self.verbose = verbose
self.shuffle = shuffle
self.n_jobs = n_jobs
self.method = method
self.random_state = random_state
def fit(self, X, y=None):
"""Fit the model from data in X.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
self : object
Returns the instance itself.
"""
random_state = check_random_state(self.random_state)
X = array2d(X)
if self.n_components is None:
n_components = X.shape[1]
else:
n_components = self.n_components
Vt, _ = dict_learning_online(X.T, n_components, alpha=self.alpha,
n_iter=self.n_iter, return_code=True,
dict_init=None, verbose=self.verbose,
callback=self.callback,
batch_size=self.batch_size,
shuffle=self.shuffle,
n_jobs=self.n_jobs, method=self.method,
random_state=random_state)
self.components_ = Vt.T
return self