forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kddcup99.py
378 lines (303 loc) · 13.3 KB
/
kddcup99.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
"""KDDCUP 99 dataset.
A classic dataset for anomaly detection.
The dataset page is available from UCI Machine Learning Repository
https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup.data.gz
"""
import sys
import errno
from gzip import GzipFile
from io import BytesIO
import logging
import os
from os.path import exists, join
try:
from urllib2 import urlopen
except ImportError:
from urllib.request import urlopen
import numpy as np
from .base import get_data_home
from ..utils import Bunch
from ..externals import joblib, six
from ..utils import check_random_state
from ..utils import shuffle as shuffle_method
URL10 = ('http://archive.ics.uci.edu/ml/'
'machine-learning-databases/kddcup99-mld/kddcup.data_10_percent.gz')
URL = ('http://archive.ics.uci.edu/ml/'
'machine-learning-databases/kddcup99-mld/kddcup.data.gz')
logger = logging.getLogger()
def fetch_kddcup99(subset=None, data_home=None, shuffle=False,
random_state=None,
percent10=True, download_if_missing=True):
"""Load and return the kddcup 99 dataset (classification).
The KDD Cup '99 dataset was created by processing the tcpdump portions
of the 1998 DARPA Intrusion Detection System (IDS) Evaluation dataset,
created by MIT Lincoln Lab [1]. The artificial data was generated using
a closed network and hand-injected attacks to produce a large number of
different types of attack with normal activity in the background.
As the initial goal was to produce a large training set for supervised
learning algorithms, there is a large proportion (80.1%) of abnormal
data which is unrealistic in real world, and inappropriate for unsupervised
anomaly detection which aims at detecting 'abnormal' data, ie
1) qualitatively different from normal data.
2) in large minority among the observations.
We thus transform the KDD Data set into two different data sets: SA and SF.
- SA is obtained by simply selecting all the normal data, and a small
proportion of abnormal data to gives an anomaly proportion of 1%.
- SF is obtained as in [2]
by simply picking up the data whose attribute logged_in is positive, thus
focusing on the intrusion attack, which gives a proportion of 0.3% of
attack.
- http and smtp are two subsets of SF corresponding with third feature
equal to 'http' (resp. to 'smtp')
General KDD structure :
================ ==========================================
Samples total 4898431
Dimensionality 41
Features discrete (int) or continuous (float)
Targets str, 'normal.' or name of the anomaly type
================ ==========================================
SA structure :
================ ==========================================
Samples total 976158
Dimensionality 41
Features discrete (int) or continuous (float)
Targets str, 'normal.' or name of the anomaly type
================ ==========================================
SF structure :
================ ==========================================
Samples total 699691
Dimensionality 4
Features discrete (int) or continuous (float)
Targets str, 'normal.' or name of the anomaly type
================ ==========================================
http structure :
================ ==========================================
Samples total 619052
Dimensionality 3
Features discrete (int) or continuous (float)
Targets str, 'normal.' or name of the anomaly type
================ ==========================================
smtp structure :
================ ==========================================
Samples total 95373
Dimensionality 3
Features discrete (int) or continuous (float)
Targets str, 'normal.' or name of the anomaly type
================ ==========================================
.. versionadded:: 0.18
Parameters
----------
subset : None, 'SA', 'SF', 'http', 'smtp'
To return the corresponding classical subsets of kddcup 99.
If None, return the entire kddcup 99 dataset.
data_home : string, optional
Specify another download and cache folder for the datasets. By default
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
.. versionadded:: 0.19
shuffle : bool, default=False
Whether to shuffle dataset.
random_state : int, RandomState instance or None, optional (default=None)
Random state for shuffling the dataset.
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
percent10 : bool, default=True
Whether to load only 10 percent of the data.
download_if_missing : bool, default=True
If False, raise a IOError if the data is not locally available
instead of trying to download the data from the source site.
Returns
-------
data : Bunch
Dictionary-like object, the interesting attributes are:
'data', the data to learn and 'target', the regression target for each
sample.
References
----------
.. [1] Analysis and Results of the 1999 DARPA Off-Line Intrusion
Detection Evaluation Richard Lippmann, Joshua W. Haines,
David J. Fried, Jonathan Korba, Kumar Das
.. [2] K. Yamanishi, J.-I. Takeuchi, G. Williams, and P. Milne. Online
unsupervised outlier detection using finite mixtures with
discounting learning algorithms. In Proceedings of the sixth
ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 320-324. ACM Press, 2000.
"""
data_home = get_data_home(data_home=data_home)
kddcup99 = _fetch_brute_kddcup99(data_home=data_home, shuffle=shuffle,
percent10=percent10,
download_if_missing=download_if_missing)
data = kddcup99.data
target = kddcup99.target
if subset == 'SA':
s = target == b'normal.'
t = np.logical_not(s)
normal_samples = data[s, :]
normal_targets = target[s]
abnormal_samples = data[t, :]
abnormal_targets = target[t]
n_samples_abnormal = abnormal_samples.shape[0]
# selected abnormal samples:
random_state = check_random_state(random_state)
r = random_state.randint(0, n_samples_abnormal, 3377)
abnormal_samples = abnormal_samples[r]
abnormal_targets = abnormal_targets[r]
data = np.r_[normal_samples, abnormal_samples]
target = np.r_[normal_targets, abnormal_targets]
if subset == 'SF' or subset == 'http' or subset == 'smtp':
# select all samples with positive logged_in attribute:
s = data[:, 11] == 1
data = np.c_[data[s, :11], data[s, 12:]]
target = target[s]
data[:, 0] = np.log((data[:, 0] + 0.1).astype(float))
data[:, 4] = np.log((data[:, 4] + 0.1).astype(float))
data[:, 5] = np.log((data[:, 5] + 0.1).astype(float))
if subset == 'http':
s = data[:, 2] == b'http'
data = data[s]
target = target[s]
data = np.c_[data[:, 0], data[:, 4], data[:, 5]]
if subset == 'smtp':
s = data[:, 2] == b'smtp'
data = data[s]
target = target[s]
data = np.c_[data[:, 0], data[:, 4], data[:, 5]]
if subset == 'SF':
data = np.c_[data[:, 0], data[:, 2], data[:, 4], data[:, 5]]
return Bunch(data=data, target=target)
def _fetch_brute_kddcup99(data_home=None,
download_if_missing=True, random_state=None,
shuffle=False, percent10=True):
"""Load the kddcup99 dataset, downloading it if necessary.
Parameters
----------
data_home : string, optional
Specify another download and cache folder for the datasets. By default
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
download_if_missing : boolean, default=True
If False, raise a IOError if the data is not locally available
instead of trying to download the data from the source site.
random_state : int, RandomState instance or None, optional (default=None)
Random state for shuffling the dataset.
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
shuffle : bool, default=False
Whether to shuffle dataset.
percent10 : bool, default=True
Whether to load only 10 percent of the data.
Returns
-------
dataset : dict-like object with the following attributes:
dataset.data : numpy array of shape (494021, 41)
Each row corresponds to the 41 features in the dataset.
dataset.target : numpy array of shape (494021,)
Each value corresponds to one of the 21 attack types or to the
label 'normal.'.
dataset.DESCR : string
Description of the kddcup99 dataset.
"""
data_home = get_data_home(data_home=data_home)
if sys.version_info[0] == 3:
# The zlib compression format use by joblib is not compatible when
# switching from Python 2 to Python 3, let us use a separate folder
# under Python 3:
dir_suffix = "-py3"
else:
# Backward compat for Python 2 users
dir_suffix = ""
if percent10:
kddcup_dir = join(data_home, "kddcup99_10" + dir_suffix)
else:
kddcup_dir = join(data_home, "kddcup99" + dir_suffix)
samples_path = join(kddcup_dir, "samples")
targets_path = join(kddcup_dir, "targets")
available = exists(samples_path)
if download_if_missing and not available:
_mkdirp(kddcup_dir)
URL_ = URL10 if percent10 else URL
logger.warning("Downloading %s" % URL_)
f = BytesIO(urlopen(URL_).read())
dt = [('duration', int),
('protocol_type', 'S4'),
('service', 'S11'),
('flag', 'S6'),
('src_bytes', int),
('dst_bytes', int),
('land', int),
('wrong_fragment', int),
('urgent', int),
('hot', int),
('num_failed_logins', int),
('logged_in', int),
('num_compromised', int),
('root_shell', int),
('su_attempted', int),
('num_root', int),
('num_file_creations', int),
('num_shells', int),
('num_access_files', int),
('num_outbound_cmds', int),
('is_host_login', int),
('is_guest_login', int),
('count', int),
('srv_count', int),
('serror_rate', float),
('srv_serror_rate', float),
('rerror_rate', float),
('srv_rerror_rate', float),
('same_srv_rate', float),
('diff_srv_rate', float),
('srv_diff_host_rate', float),
('dst_host_count', int),
('dst_host_srv_count', int),
('dst_host_same_srv_rate', float),
('dst_host_diff_srv_rate', float),
('dst_host_same_src_port_rate', float),
('dst_host_srv_diff_host_rate', float),
('dst_host_serror_rate', float),
('dst_host_srv_serror_rate', float),
('dst_host_rerror_rate', float),
('dst_host_srv_rerror_rate', float),
('labels', 'S16')]
DT = np.dtype(dt)
file_ = GzipFile(fileobj=f, mode='r')
Xy = []
for line in file_.readlines():
if six.PY3:
line = line.decode()
Xy.append(line.replace('\n', '').split(','))
file_.close()
print('extraction done')
Xy = np.asarray(Xy, dtype=object)
for j in range(42):
Xy[:, j] = Xy[:, j].astype(DT[j])
X = Xy[:, :-1]
y = Xy[:, -1]
# XXX bug when compress!=0:
# (error: 'Incorrect data length while decompressing[...] the file
# could be corrupted.')
joblib.dump(X, samples_path, compress=0)
joblib.dump(y, targets_path, compress=0)
elif not available:
if not download_if_missing:
raise IOError("Data not found and `download_if_missing` is False")
try:
X, y
except NameError:
X = joblib.load(samples_path)
y = joblib.load(targets_path)
if shuffle:
X, y = shuffle_method(X, y, random_state=random_state)
return Bunch(data=X, target=y, DESCR=__doc__)
def _mkdirp(d):
"""Ensure directory d exists (like mkdir -p on Unix)
No guarantee that the directory is writable.
"""
try:
os.makedirs(d)
except OSError as e:
if e.errno != errno.EEXIST:
raise