forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kernel_pca.py
262 lines (207 loc) · 8.55 KB
/
kernel_pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
"""Kernel Principal Components Analysis"""
# Author: Mathieu Blondel <mathieu@mblondel.org>
# License: BSD 3 clause
import numpy as np
from scipy import linalg
from ..utils.arpack import eigsh
from ..base import BaseEstimator, TransformerMixin
from ..preprocessing import KernelCenterer
from ..metrics.pairwise import pairwise_kernels
class KernelPCA(BaseEstimator, TransformerMixin):
"""Kernel Principal component analysis (KPCA)
Non-linear dimensionality reduction through the use of kernels.
Parameters
----------
n_components: int or None
Number of components. If None, all non-zero components are kept.
kernel: "linear" | "poly" | "rbf" | "sigmoid" | "cosine" | "precomputed"
Kernel.
Default: "linear"
degree : int, default=3
Degree for poly, rbf and sigmoid kernels. Ignored by other kernels.
gamma : float, optional
Kernel coefficient for rbf and poly kernels. Default: 1/n_features.
Ignored by other kernels.
coef0 : float, optional
Independent term in poly and sigmoid kernels.
Ignored by other kernels.
kernel_params : mapping of string to any, optional
Parameters (keyword arguments) and values for kernel passed as
callable object. Ignored by other kernels.
alpha: int
Hyperparameter of the ridge regression that learns the
inverse transform (when fit_inverse_transform=True).
Default: 1.0
fit_inverse_transform: bool
Learn the inverse transform for non-precomputed kernels.
(i.e. learn to find the pre-image of a point)
Default: False
eigen_solver: string ['auto'|'dense'|'arpack']
Select eigensolver to use. If n_components is much less than
the number of training samples, arpack may be more efficient
than the dense eigensolver.
tol: float
convergence tolerance for arpack.
Default: 0 (optimal value will be chosen by arpack)
max_iter : int
maximum number of iterations for arpack
Default: None (optimal value will be chosen by arpack)
remove_zero_eig : boolean, default=True
If True, then all components with zero eigenvalues are removed, so
that the number of components in the output may be < n_components
(and sometimes even zero due to numerical instability).
When n_components is None, this parameter is ignored and components
with zero eigenvalues are removed regardless.
Attributes
----------
`lambdas_`, `alphas_`:
Eigenvalues and eigenvectors of the centered kernel matrix
`dual_coef_`:
Inverse transform matrix
`X_transformed_fit_`:
Projection of the fitted data on the kernel principal components
References
----------
Kernel PCA was introduced in:
Bernhard Schoelkopf, Alexander J. Smola,
and Klaus-Robert Mueller. 1999. Kernel principal
component analysis. In Advances in kernel methods,
MIT Press, Cambridge, MA, USA 327-352.
"""
def __init__(self, n_components=None, kernel="linear",
gamma=None, degree=3, coef0=1, kernel_params=None,
alpha=1.0, fit_inverse_transform=False, eigen_solver='auto',
tol=0, max_iter=None, remove_zero_eig=False):
if fit_inverse_transform and kernel == 'precomputed':
raise ValueError(
"Cannot fit_inverse_transform with a precomputed kernel.")
self.n_components = n_components
self.kernel = kernel
self.kernel_params = kernel_params
self.gamma = gamma
self.degree = degree
self.coef0 = coef0
self.alpha = alpha
self.fit_inverse_transform = fit_inverse_transform
self.eigen_solver = eigen_solver
self.remove_zero_eig = remove_zero_eig
self.tol = tol
self.max_iter = max_iter
self._centerer = KernelCenterer()
@property
def _pairwise(self):
return self.kernel == "precomputed"
def _get_kernel(self, X, Y=None):
if callable(self.kernel):
params = self.kernel_params or {}
else:
params = {"gamma": self.gamma,
"degree": self.degree,
"coef0": self.coef0}
return pairwise_kernels(X, Y, metric=self.kernel,
filter_params=True, **params)
def _fit_transform(self, K):
""" Fit's using kernel K"""
# center kernel
K = self._centerer.fit_transform(K)
if self.n_components is None:
n_components = K.shape[0]
else:
n_components = min(K.shape[0], self.n_components)
# compute eigenvectors
if self.eigen_solver == 'auto':
if K.shape[0] > 200 and n_components < 10:
eigen_solver = 'arpack'
else:
eigen_solver = 'dense'
else:
eigen_solver = self.eigen_solver
if eigen_solver == 'dense':
self.lambdas_, self.alphas_ = linalg.eigh(
K, eigvals=(K.shape[0] - n_components, K.shape[0] - 1))
elif eigen_solver == 'arpack':
self.lambdas_, self.alphas_ = eigsh(K, n_components,
which="LA",
tol=self.tol,
maxiter=self.max_iter)
# sort eigenvectors in descending order
indices = self.lambdas_.argsort()[::-1]
self.lambdas_ = self.lambdas_[indices]
self.alphas_ = self.alphas_[:, indices]
# remove eigenvectors with a zero eigenvalue
if self.remove_zero_eig or self.n_components is None:
self.alphas_ = self.alphas_[:, self.lambdas_ > 0]
self.lambdas_ = self.lambdas_[self.lambdas_ > 0]
return K
def _fit_inverse_transform(self, X_transformed, X):
if hasattr(X, "tocsr"):
raise NotImplementedError("Inverse transform not implemented for "
"sparse matrices!")
n_samples = X_transformed.shape[0]
K = self._get_kernel(X_transformed)
K.flat[::n_samples + 1] += self.alpha
self.dual_coef_ = linalg.solve(K, X, sym_pos=True, overwrite_a=True)
self.X_transformed_fit_ = X_transformed
def fit(self, X, y=None):
"""Fit the model from data in X.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
self : object
Returns the instance itself.
"""
K = self._get_kernel(X)
self._fit_transform(K)
if self.fit_inverse_transform:
sqrt_lambdas = np.diag(np.sqrt(self.lambdas_))
X_transformed = np.dot(self.alphas_, sqrt_lambdas)
self._fit_inverse_transform(X_transformed, X)
self.X_fit_ = X
return self
def fit_transform(self, X, y=None, **params):
"""Fit the model from data in X and transform X.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
Returns
-------
X_new: array-like, shape (n_samples, n_components)
"""
self.fit(X, **params)
X_transformed = self.alphas_ * np.sqrt(self.lambdas_)
if self.fit_inverse_transform:
self._fit_inverse_transform(X_transformed, X)
return X_transformed
def transform(self, X):
"""Transform X.
Parameters
----------
X: array-like, shape (n_samples, n_features)
Returns
-------
X_new: array-like, shape (n_samples, n_components)
"""
K = self._centerer.transform(self._get_kernel(X, self.X_fit_))
return np.dot(K, self.alphas_ / np.sqrt(self.lambdas_))
def inverse_transform(self, X):
"""Transform X back to original space.
Parameters
----------
X: array-like, shape (n_samples, n_components)
Returns
-------
X_new: array-like, shape (n_samples, n_features)
References
----------
"Learning to Find Pre-Images", G BakIr et al, 2004.
"""
if not self.fit_inverse_transform:
raise ValueError("Inverse transform was not fitted!")
K = self._get_kernel(X, self.X_transformed_fit_)
return np.dot(K, self.dual_coef_)