forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_multiclass.py
340 lines (275 loc) · 13.1 KB
/
test_multiclass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import numpy as np
import warnings
from sklearn.utils.testing import assert_array_equal
from sklearn.utils.testing import assert_equal
from sklearn.utils.testing import assert_almost_equal
from sklearn.utils.testing import assert_true
from sklearn.utils.testing import assert_false
from sklearn.utils.testing import assert_raises
from sklearn.utils.testing import assert_greater
from sklearn.multiclass import OneVsRestClassifier
from sklearn.multiclass import OneVsOneClassifier
from sklearn.multiclass import OutputCodeClassifier
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.svm import LinearSVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import (LinearRegression, Lasso, ElasticNet, Ridge,
Perceptron)
from sklearn.tree import DecisionTreeClassifier
from sklearn.grid_search import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn import svm
from sklearn import datasets
iris = datasets.load_iris()
rng = np.random.RandomState(0)
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]
n_classes = 3
def test_ovr_exceptions():
ovr = OneVsRestClassifier(LinearSVC(random_state=0))
assert_raises(ValueError, ovr.predict, [])
def test_ovr_fit_predict():
# A classifier which implements decision_function.
ovr = OneVsRestClassifier(LinearSVC(random_state=0))
pred = ovr.fit(iris.data, iris.target).predict(iris.data)
assert_equal(len(ovr.estimators_), n_classes)
clf = LinearSVC(random_state=0)
pred2 = clf.fit(iris.data, iris.target).predict(iris.data)
assert_equal(np.mean(iris.target == pred), np.mean(iris.target == pred2))
# A classifier which implements predict_proba.
ovr = OneVsRestClassifier(MultinomialNB())
pred = ovr.fit(iris.data, iris.target).predict(iris.data)
assert_greater(np.mean(iris.target == pred), 0.65)
def test_ovr_always_present():
# Test that ovr works with classes that are always present or absent
X = np.ones((10, 2))
X[:5, :] = 0
y = [[int(i >= 5), 2, 3] for i in range(10)]
with warnings.catch_warnings(record=True):
ovr = OneVsRestClassifier(DecisionTreeClassifier())
ovr.fit(X, y)
y_pred = ovr.predict(X)
assert_array_equal(np.array(y_pred), np.array(y))
def test_ovr_multilabel():
# Toy dataset where features correspond directly to labels.
X = np.array([[0, 4, 5], [0, 5, 0], [3, 3, 3], [4, 0, 6], [6, 0, 0]])
y = [["spam", "eggs"], ["spam"], ["ham", "eggs", "spam"],
["ham", "eggs"], ["ham"]]
#y = [[1, 2], [1], [0, 1, 2], [0, 2], [0]]
Y = np.array([[0, 1, 1],
[0, 1, 0],
[1, 1, 1],
[1, 0, 1],
[1, 0, 0]])
classes = set("ham eggs spam".split())
for base_clf in (MultinomialNB(), LinearSVC(random_state=0),
LinearRegression(), Ridge(),
ElasticNet(), Lasso(alpha=0.5)):
# test input as lists of tuples
clf = OneVsRestClassifier(base_clf).fit(X, y)
assert_equal(set(clf.classes_), classes)
y_pred = clf.predict([[0, 4, 4]])[0]
assert_equal(set(y_pred), set(["spam", "eggs"]))
assert_true(clf.multilabel_)
# test input as label indicator matrix
clf = OneVsRestClassifier(base_clf).fit(X, Y)
y_pred = clf.predict([[0, 4, 4]])[0]
assert_array_equal(y_pred, [0, 1, 1])
assert_true(clf.multilabel_)
def test_ovr_fit_predict_svc():
ovr = OneVsRestClassifier(svm.SVC())
ovr.fit(iris.data, iris.target)
assert_equal(len(ovr.estimators_), 3)
assert_greater(ovr.score(iris.data, iris.target), .9)
def test_ovr_multilabel_dataset():
base_clf = MultinomialNB(alpha=1)
for au, prec, recall in zip((True, False), (0.65, 0.74), (0.72, 0.84)):
X, Y = datasets.make_multilabel_classification(n_samples=100,
n_features=20,
n_classes=5,
n_labels=2,
length=50,
allow_unlabeled=au,
random_state=0)
X_train, Y_train = X[:80], Y[:80]
X_test, Y_test = X[80:], Y[80:]
clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
Y_pred = clf.predict(X_test)
assert_true(clf.multilabel_)
assert_almost_equal(precision_score(Y_test, Y_pred, average="micro"),
prec,
decimal=2)
assert_almost_equal(recall_score(Y_test, Y_pred, average="micro"),
recall,
decimal=2)
def test_ovr_multilabel_predict_proba():
base_clf = MultinomialNB(alpha=1)
for au in (False, True):
X, Y = datasets.make_multilabel_classification(n_samples=100,
n_features=20,
n_classes=5,
n_labels=3,
length=50,
allow_unlabeled=au,
random_state=0)
X_train, Y_train = X[:80], Y[:80]
X_test, Y_test = X[80:], Y[80:]
clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
# decision function only estimator. Fails in current implementation.
decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train)
assert_raises(AttributeError, decision_only.predict_proba, X_test)
Y_pred = clf.predict(X_test)
Y_proba = clf.predict_proba(X_test)
# predict assigns a label if the probability that the
# sample has the label is greater than 0.5.
pred = [tuple(l.nonzero()[0]) for l in (Y_proba > 0.5)]
assert_equal(pred, Y_pred)
def test_ovr_single_label_predict_proba():
base_clf = MultinomialNB(alpha=1)
X, Y = iris.data, iris.target
X_train, Y_train = X[:80], Y[:80]
X_test, Y_test = X[80:], Y[80:]
clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
# decision function only estimator. Fails in current implementation.
decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train)
assert_raises(AttributeError, decision_only.predict_proba, X_test)
Y_pred = clf.predict(X_test)
Y_proba = clf.predict_proba(X_test)
assert_almost_equal(Y_proba.sum(axis=1), 1.0)
# predict assigns a label if the probability that the
# sample has the label is greater than 0.5.
pred = np.array([l.argmax() for l in Y_proba])
assert_false((pred - Y_pred).any())
def test_ovr_multilabel_decision_function():
X, Y = datasets.make_multilabel_classification(n_samples=100,
n_features=20,
n_classes=5,
n_labels=3,
length=50,
allow_unlabeled=True,
random_state=0)
X_train, Y_train = X[:80], Y[:80]
X_test, Y_test = X[80:], Y[80:]
clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train)
assert_array_equal((clf.decision_function(X_test) > 0).nonzero()[1],
np.hstack(clf.predict(X_test)))
def test_ovr_single_label_decision_function():
X, Y = datasets.make_classification(n_samples=100,
n_features=20,
random_state=0)
X_train, Y_train = X[:80], Y[:80]
X_test, Y_test = X[80:], Y[80:]
clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train)
assert_array_equal(clf.decision_function(X_test).ravel() > 0,
clf.predict(X_test))
def test_ovr_gridsearch():
ovr = OneVsRestClassifier(LinearSVC(random_state=0))
Cs = [0.1, 0.5, 0.8]
cv = GridSearchCV(ovr, {'estimator__C': Cs})
cv.fit(iris.data, iris.target)
best_C = cv.best_estimator_.estimators_[0].C
assert_true(best_C in Cs)
def test_ovr_pipeline():
# Test with pipeline of length one
# This test is needed because the multiclass estimators may fail to detect
# the presence of predict_proba or decision_function.
clf = Pipeline([("tree", DecisionTreeClassifier())])
ovr_pipe = OneVsRestClassifier(clf)
ovr_pipe.fit(iris.data, iris.target)
ovr = OneVsRestClassifier(DecisionTreeClassifier())
ovr.fit(iris.data, iris.target)
assert_array_equal(ovr.predict(iris.data), ovr_pipe.predict(iris.data))
def test_ovr_coef_():
ovr = OneVsRestClassifier(LinearSVC(random_state=0))
ovr.fit(iris.data, iris.target)
shape = ovr.coef_.shape
assert_equal(shape[0], n_classes)
assert_equal(shape[1], iris.data.shape[1])
def test_ovr_coef_exceptions():
# Not fitted exception!
ovr = OneVsRestClassifier(LinearSVC(random_state=0))
# lambda is needed because we don't want coef_ to be evaluated right away
assert_raises(ValueError, lambda x: ovr.coef_, None)
# Doesn't have coef_ exception!
ovr = OneVsRestClassifier(DecisionTreeClassifier())
ovr.fit(iris.data, iris.target)
assert_raises(AttributeError, lambda x: ovr.coef_, None)
def test_ovo_exceptions():
ovo = OneVsOneClassifier(LinearSVC(random_state=0))
assert_raises(ValueError, ovo.predict, [])
def test_ovo_fit_predict():
# A classifier which implements decision_function.
ovo = OneVsOneClassifier(LinearSVC(random_state=0))
ovo.fit(iris.data, iris.target).predict(iris.data)
assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2)
# A classifier which implements predict_proba.
ovo = OneVsOneClassifier(MultinomialNB())
ovo.fit(iris.data, iris.target).predict(iris.data)
assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2)
def test_ovo_gridsearch():
ovo = OneVsOneClassifier(LinearSVC(random_state=0))
Cs = [0.1, 0.5, 0.8]
cv = GridSearchCV(ovo, {'estimator__C': Cs})
cv.fit(iris.data, iris.target)
best_C = cv.best_estimator_.estimators_[0].C
assert_true(best_C in Cs)
def test_ovo_ties():
# test that ties are broken using the decision function, not defaulting to
# the smallest label
X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]])
y = np.array([2, 0, 1, 2])
multi_clf = OneVsOneClassifier(Perceptron())
ovo_prediction = multi_clf.fit(X, y).predict(X)
# recalculate votes to make sure we have a tie
predictions = np.vstack([clf.predict(X) for clf in multi_clf.estimators_])
scores = np.vstack([clf.decision_function(X)
for clf in multi_clf.estimators_])
# classifiers are in order 0-1, 0-2, 1-2
# aggregate votes:
votes = np.zeros((4, 3))
votes[np.arange(4), predictions[0]] += 1
votes[np.arange(4), 2 * predictions[1]] += 1
votes[np.arange(4), 1 + predictions[2]] += 1
# for the first point, there is one vote per class
assert_array_equal(votes[0, :], 1)
# for the rest, there is no tie and the prediction is the argmax
assert_array_equal(np.argmax(votes[1:], axis=1), ovo_prediction[1:])
# for the tie, the prediction is the class with the highest score
assert_equal(ovo_prediction[0], 1)
# score for one is greater than score for zero
assert_greater(scores[2, 0] - scores[0, 0], scores[0, 0] + scores[1, 0])
# score for one is greater than score for two
assert_greater(scores[2, 0] - scores[0, 0], -scores[1, 0] - scores[2, 0])
def test_ovo_ties2():
# test that ties can not only be won by the first two labels
X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]])
y_ref = np.array([2, 0, 1, 2])
# cycle through labels so that each label wins once
for i in range(3):
y = (y_ref + i) % 3
multi_clf = OneVsOneClassifier(Perceptron())
ovo_prediction = multi_clf.fit(X, y).predict(X)
assert_equal(ovo_prediction[0], (1 + i) % 3)
def test_ecoc_exceptions():
ecoc = OutputCodeClassifier(LinearSVC(random_state=0))
assert_raises(ValueError, ecoc.predict, [])
def test_ecoc_fit_predict():
# A classifier which implements decision_function.
ecoc = OutputCodeClassifier(LinearSVC(random_state=0),
code_size=2, random_state=0)
ecoc.fit(iris.data, iris.target).predict(iris.data)
assert_equal(len(ecoc.estimators_), n_classes * 2)
# A classifier which implements predict_proba.
ecoc = OutputCodeClassifier(MultinomialNB(), code_size=2, random_state=0)
ecoc.fit(iris.data, iris.target).predict(iris.data)
assert_equal(len(ecoc.estimators_), n_classes * 2)
def test_ecoc_gridsearch():
ecoc = OutputCodeClassifier(LinearSVC(random_state=0),
random_state=0)
Cs = [0.1, 0.5, 0.8]
cv = GridSearchCV(ecoc, {'estimator__C': Cs})
cv.fit(iris.data, iris.target)
best_C = cv.best_estimator_.estimators_[0].C
assert_true(best_C in Cs)