forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
huber.py
286 lines (233 loc) · 10 KB
/
huber.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# Authors: Manoj Kumar mks542@nyu.edu
# License: BSD 3 clause
import numpy as np
from scipy import optimize, sparse
from ..base import BaseEstimator, RegressorMixin
from .base import LinearModel
from ..utils import check_X_y
from ..utils import check_consistent_length
from ..utils import axis0_safe_slice
from ..utils.extmath import safe_sparse_dot
def _huber_loss_and_gradient(w, X, y, epsilon, alpha, sample_weight=None):
"""Returns the Huber loss and the gradient.
Parameters
----------
w : ndarray, shape (n_features + 1,) or (n_features + 2,)
Feature vector.
w[:n_features] gives the coefficients
w[-1] gives the scale factor and if the intercept is fit w[-2]
gives the intercept factor.
X : ndarray, shape (n_samples, n_features)
Input data.
y : ndarray, shape (n_samples,)
Target vector.
epsilon : float
Robustness of the Huber estimator.
alpha : float
Regularization parameter.
sample_weight : ndarray, shape (n_samples,), optional
Weight assigned to each sample.
Returns
-------
loss : float
Huber loss.
gradient : ndarray, shape (len(w))
Returns the derivative of the Huber loss with respect to each
coefficient, intercept and the scale as a vector.
"""
X_is_sparse = sparse.issparse(X)
_, n_features = X.shape
fit_intercept = (n_features + 2 == w.shape[0])
if fit_intercept:
intercept = w[-2]
sigma = w[-1]
w = w[:n_features]
n_samples = np.sum(sample_weight)
# Calculate the values where |y - X'w -c / sigma| > epsilon
# The values above this threshold are outliers.
linear_loss = y - safe_sparse_dot(X, w)
if fit_intercept:
linear_loss -= intercept
abs_linear_loss = np.abs(linear_loss)
outliers_mask = abs_linear_loss > epsilon * sigma
# Calculate the linear loss due to the outliers.
# This is equal to (2 * M * |y - X'w -c / sigma| - M**2) * sigma
outliers = abs_linear_loss[outliers_mask]
num_outliers = np.count_nonzero(outliers_mask)
n_non_outliers = X.shape[0] - num_outliers
# n_sq_outliers includes the weight give to the outliers while
# num_outliers is just the number of outliers.
outliers_sw = sample_weight[outliers_mask]
n_sw_outliers = np.sum(outliers_sw)
outlier_loss = (2. * epsilon * np.sum(outliers_sw * outliers) -
sigma * n_sw_outliers * epsilon ** 2)
# Calculate the quadratic loss due to the non-outliers.-
# This is equal to |(y - X'w - c)**2 / sigma**2| * sigma
non_outliers = linear_loss[~outliers_mask]
weighted_non_outliers = sample_weight[~outliers_mask] * non_outliers
weighted_loss = np.dot(weighted_non_outliers.T, non_outliers)
squared_loss = weighted_loss / sigma
if fit_intercept:
grad = np.zeros(n_features + 2)
else:
grad = np.zeros(n_features + 1)
# Gradient due to the squared loss.
X_non_outliers = -axis0_safe_slice(X, ~outliers_mask, n_non_outliers)
grad[:n_features] = (
2. / sigma * safe_sparse_dot(weighted_non_outliers, X_non_outliers))
# Gradient due to the linear loss.
signed_outliers = np.ones_like(outliers)
signed_outliers_mask = linear_loss[outliers_mask] < 0
signed_outliers[signed_outliers_mask] = -1.0
X_outliers = axis0_safe_slice(X, outliers_mask, num_outliers)
sw_outliers = sample_weight[outliers_mask] * signed_outliers
grad[:n_features] -= 2. * epsilon * (
safe_sparse_dot(sw_outliers, X_outliers))
# Gradient due to the penalty.
grad[:n_features] += alpha * 2. * w
# Gradient due to sigma.
grad[-1] = n_samples
grad[-1] -= n_sw_outliers * epsilon ** 2
grad[-1] -= squared_loss / sigma
# Gradient due to the intercept.
if fit_intercept:
grad[-2] = -2. * np.sum(weighted_non_outliers) / sigma
grad[-2] -= 2. * epsilon * np.sum(sw_outliers)
loss = n_samples * sigma + squared_loss + outlier_loss
loss += alpha * np.dot(w, w)
return loss, grad
class HuberRegressor(LinearModel, RegressorMixin, BaseEstimator):
"""Linear regression model that is robust to outliers.
The Huber Regressor optimizes the squared loss for the samples where
``|(y - X'w) / sigma| < epsilon`` and the absolute loss for the samples
where ``|(y - X'w) / sigma| > epsilon``, where w and sigma are parameters
to be optimized. The parameter sigma makes sure that if y is scaled up
or down by a certain factor, one does not need to rescale epsilon to
achieve the same robustness. Note that this does not take into account
the fact that the different features of X may be of different scales.
This makes sure that the loss function is not heavily influenced by the
outliers while not completely ignoring their effect.
Read more in the :ref:`User Guide <huber_regression>`
.. versionadded:: 0.18
Parameters
----------
epsilon : float, greater than 1.0, default 1.35
The parameter epsilon controls the number of samples that should be
classified as outliers. The smaller the epsilon, the more robust it is
to outliers.
max_iter : int, default 100
Maximum number of iterations that scipy.optimize.fmin_l_bfgs_b
should run for.
alpha : float, default 0.0001
Regularization parameter.
warm_start : bool, default False
This is useful if the stored attributes of a previously used model
has to be reused. If set to False, then the coefficients will
be rewritten for every call to fit.
fit_intercept : bool, default True
Whether or not to fit the intercept. This can be set to False
if the data is already centered around the origin.
tol : float, default 1e-5
The iteration will stop when
``max{|proj g_i | i = 1, ..., n}`` <= ``tol``
where pg_i is the i-th component of the projected gradient.
Attributes
----------
coef_ : array, shape (n_features,)
Features got by optimizing the Huber loss.
intercept_ : float
Bias.
scale_ : float
The value by which ``|y - X'w - c|`` is scaled down.
n_iter_ : int
Number of iterations that fmin_l_bfgs_b has run for.
Not available if SciPy version is 0.9 and below.
outliers_ : array, shape (n_samples,)
A boolean mask which is set to True where the samples are identified
as outliers.
References
----------
.. [1] Peter J. Huber, Elvezio M. Ronchetti, Robust Statistics
Concomitant scale estimates, pg 172
.. [2] Art B. Owen (2006), A robust hybrid of lasso and ridge regression.
http://statweb.stanford.edu/~owen/reports/hhu.pdf
"""
def __init__(self, epsilon=1.35, max_iter=100, alpha=0.0001,
warm_start=False, fit_intercept=True, tol=1e-05):
self.epsilon = epsilon
self.max_iter = max_iter
self.alpha = alpha
self.warm_start = warm_start
self.fit_intercept = fit_intercept
self.tol = tol
def fit(self, X, y, sample_weight=None):
"""Fit the model according to the given training data.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples and
n_features is the number of features.
y : array-like, shape (n_samples,)
Target vector relative to X.
sample_weight : array-like, shape (n_samples,)
Weight given to each sample.
Returns
-------
self : object
Returns self.
"""
X, y = check_X_y(
X, y, copy=False, accept_sparse=['csr'], y_numeric=True)
if sample_weight is not None:
sample_weight = np.array(sample_weight)
check_consistent_length(y, sample_weight)
else:
sample_weight = np.ones_like(y)
if self.epsilon < 1.0:
raise ValueError(
"epsilon should be greater than or equal to 1.0, got %f"
% self.epsilon)
if self.warm_start and hasattr(self, 'coef_'):
parameters = np.concatenate(
(self.coef_, [self.intercept_, self.scale_]))
else:
if self.fit_intercept:
parameters = np.zeros(X.shape[1] + 2)
else:
parameters = np.zeros(X.shape[1] + 1)
# Make sure to initialize the scale parameter to a strictly
# positive value:
parameters[-1] = 1
# Sigma or the scale factor should be non-negative.
# Setting it to be zero might cause undefined bounds hence we set it
# to a value close to zero.
bounds = np.tile([-np.inf, np.inf], (parameters.shape[0], 1))
bounds[-1][0] = np.finfo(np.float64).eps * 10
# Type Error caused in old versions of SciPy because of no
# maxiter argument ( <= 0.9).
try:
parameters, f, dict_ = optimize.fmin_l_bfgs_b(
_huber_loss_and_gradient, parameters,
args=(X, y, self.epsilon, self.alpha, sample_weight),
maxiter=self.max_iter, pgtol=self.tol, bounds=bounds,
iprint=0)
except TypeError:
parameters, f, dict_ = optimize.fmin_l_bfgs_b(
_huber_loss_and_gradient, parameters,
args=(X, y, self.epsilon, self.alpha, sample_weight),
bounds=bounds)
if dict_['warnflag'] == 2:
raise ValueError("HuberRegressor convergence failed:"
" l-BFGS-b solver terminated with %s"
% dict_['task'].decode('ascii'))
self.n_iter_ = dict_.get('nit', None)
self.scale_ = parameters[-1]
if self.fit_intercept:
self.intercept_ = parameters[-2]
else:
self.intercept_ = 0.0
self.coef_ = parameters[:X.shape[1]]
residual = np.abs(
y - safe_sparse_dot(X, self.coef_) - self.intercept_)
self.outliers_ = residual > self.scale_ * self.epsilon
return self