The aim of this project is to provide a path-finding library that can be easily incorporated into web games. It may run on Node.js or the browser.
It comes along with an online demo to show how the algorithms execute.
If you want to use it in Node.js, you may install it via npm
.
npm install pathfinding
Then, in your program:
var PF = require('pathfinding');
Now skip to the Basic Usage
section of this readme.
Download the minified js file and include it in your web page.
<script type="text/javascript" src="./PathFinding.min.js"></script>
To build a grid-map of width 5 and height 3:
var grid = new PF.Grid(5, 3);
By default, all the nodes in the grid will be able to be walked through.
To set whether a node at a given coordinate is walkable or not, use the setWalkableAt
method.
For example, to set the node at (0, 1) to be un-walkable, where 0 is the x coordinate (from left to right), and 1 is the y coordinate (from up to down):
grid.setWalkableAt(0, 1, false);
You may also pass in a matrix while instantiating the PF.Grid
class.
It will initiate all the nodes in the grid with the same walkability indicated by the matrix.
0 for walkable while 1 for blocked.
var matrix = [
[0, 0, 0, 1, 0],
[1, 0, 0, 0, 1],
[0, 0, 1, 0, 0],
];
var grid = new PF.Grid(5, 3, matrix);
Currently there are eight path-finders bundled in this library, namely:
AStarFinder
*BreadthFirstFinder
*BestFirstFinder
DijkstraFinder
*BiAStarFinder
BiBestFirstFinder
BiDijkstraFinder
*BiBreadthFirstFinder
*
The suffix Bi
for the last four finders in the above list stands for the bi-directional searching strategy.
Also, Note that only the finders with trailing asterisks are guaranteed to find the shortest path.
To build a path-finder, say, the AStarFinder
:
var finder = new PF.AStarFinder();
To find a path from (1, 2) to (4, 2), (Note: both the start point and end point should be walkable):
var path = finder.findPath(1, 2, 4, 2, grid);
path
will be an array of coordinates including both the start and end positions.
For the matrix
defined previously, the path
will be:
[ [ 1, 2 ], [ 1, 1 ], [ 2, 1 ], [ 3, 1 ], [ 3, 2 ], [ 4, 2 ] ]
Be aware that grid
will be modified in each path-finding, and will not be usable afterwards. If you want to use a single grid multiple times, create a clone for it before calling findPath
.
var gridBackup = grid.clone();
When instantiating path-finders, you may pass in additional parameters to indicate which specific strategies to use.
For all path-finders, you may indicate whether diagonal movement is allowed. The default value is false
, which means that the path can only go orthogonally.
In order to enable diagonal movement:
var finder = new PF.AStarFinder({
allowDiagonal: true
});
For AStarFinder
, BestFirstFinder
and all their Bi
relatives, you may indicate which heuristic function to use.
The predefined heuristics are PF.Heuristic.manhattan
(defalut), PF.Heuristic.chebyshev
and PF.Heuristic.euclidean
.
To use the chebyshev heuristic:
var finder = new PF.AStarFinder({
heuristic: PF.Heuristic.chebyshev)
});
To build a BestFirstFinder
with diagonal movement allowed and a custom heuristic function:
var finder = new PF.BestFirstFinder({
allowDiagonal: true,
heuristic: function(dx, dy) {
return Math.min(dx, dy);
}
});
For a detailed developer's API document, see http://qiao.github.com/PathFinding.js/doc
This project is released under the MIT License .