-
Notifications
You must be signed in to change notification settings - Fork 2
/
064. Minimum Path Sum.cpp
67 lines (57 loc) · 2.23 KB
/
064. Minimum Path Sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/*
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
*/
// Non-optimized DP. Time: O(mn), Space: O(mn).
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
if (grid.empty() || grid[0].empty()) return 0;
int m = grid.size(), n = grid[0].size();
vector<vector<int>> dp(m, vector<int> (n, 0));
dp[0][0] = grid[0][0];
for (int i = 1; i < m; i++) dp[i][0] = dp[i-1][0] + grid[i][0]; // first column
for (int j = 1; j < n; j++) dp[0][j] = dp[0][j-1] + grid[0][j]; // first row
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j];
}
}
return dp[m-1][n-1];
}
};
// Space optimized using Roll Arrays. Time: O(mn), Space: O(min(m, n)). Two Rows.
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
if (grid.empty() || grid[0].empty()) return 0;
int m = grid.size(), n = grid[0].size();
vector<vector<int>> dp(2, vector<int> (n, 0));
dp[0][0] = grid[0][0];
for (int j = 1; j < n; j++) dp[0][j] = dp[0][j-1] + grid[0][j]; // first row
for (int i = 1; i < m; i++) {
for (int j = 0; j < n; j++) {
if (j == 0) dp[i%2][j] = dp[(i-1)%2][j] + grid[i][j];
else dp[i%2][j] = min(dp[(i-1)%2][j], dp[i%2][j-1]) + grid[i][j];
}
}
return dp[(m-1)%2][n-1];
}
};
// DP: space optimized. Time: O(mn), Space: O(min(m, n)). One Row.
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
if (grid.empty() || grid[0].empty()) return 0;
int m = grid.size(), n = grid[0].size();
vector<int> dp(n, grid[0][0]);
for (int j = 1; j < n; j++) dp[j] = dp[j-1] + grid[0][j];
for (int i = 1; i < m; i++) {
dp[0] += grid[i][0];
for (int j = 1; j < n; j++) {
dp[j] = min(dp[j], dp[j-1]) + grid[i][j];
}
}
return dp[n-1];
}
};