-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
68 lines (49 loc) · 1.8 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from flask import Flask, render_template, jsonify, request, url_for
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
import os
from werkzeug.utils import secure_filename
from keras.preprocessing.image import load_img, img_to_array, array_to_img, save_img
from PIL import Image, ImageOps
# Define Flask app
app = Flask(__name__)
# Load the trained model
model = keras.models.load_model(
'/Users/harshjhunjhunwala/Desktop/github/facial_keypoint/model.h5')
def model_predict(img_path, model):
img = load_img(img_path, target_size=(96, 96))
im2 = ImageOps.grayscale(img)
x = img_to_array(im2)
x = np.expand_dims(x, axis=0)
preds = model.predict(x)
return preds
# plt.imshow(x.reshape(96,96 ),cmap='gray')
# plt.scatter(preds[0::2], preds[1::2])
# plt.show()
@app.route("/", methods=['GET'])
def index():
return render_template('index.html')
@app.route("/predict", methods=['GET', 'POST'])
def upload():
if request.method == "POST":
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(basepath, 'uploads',
secure_filename(f.filename))
f.save(file_path)
preds = model_predict(file_path, model)
download_path = os.path.join('downloads', secure_filename(f.filename))
img = load_img(file_path, target_size=(96, 96))
im2 = ImageOps.grayscale(img)
x = img_to_array(im2)
plt.imshow(x.reshape(96, 96), cmap='gray')
plt.scatter(preds[0][0::2], preds[0][1::2])
plt.savefig(download_path)
return str(preds)
return 'upload func ran'
if __name__ == '__main__':
app.run(debug=True)