forked from CSAILVision/semantic-segmentation-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_multipro.py
223 lines (179 loc) · 6.89 KB
/
eval_multipro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# System libs
import os
import argparse
from distutils.version import LooseVersion
from multiprocessing import Queue, Process
# Numerical libs
import numpy as np
import math
import torch
import torch.nn as nn
from scipy.io import loadmat
# Our libs
from mit_semseg.config import cfg
from mit_semseg.dataset import ValDataset
from mit_semseg.models import ModelBuilder, SegmentationModule
from mit_semseg.utils import AverageMeter, colorEncode, accuracy, intersectionAndUnion, parse_devices, setup_logger
from mit_semseg.lib.nn import user_scattered_collate, async_copy_to
from mit_semseg.lib.utils import as_numpy
from PIL import Image
from tqdm import tqdm
colors = loadmat('data/color150.mat')['colors']
def visualize_result(data, pred, dir_result):
(img, seg, info) = data
# segmentation
seg_color = colorEncode(seg, colors)
# prediction
pred_color = colorEncode(pred, colors)
# aggregate images and save
im_vis = np.concatenate((img, seg_color, pred_color),
axis=1).astype(np.uint8)
img_name = info.split('/')[-1]
Image.fromarray(im_vis).save(os.path.join(dir_result, img_name.replace('.jpg', '.png')))
def evaluate(segmentation_module, loader, cfg, gpu_id, result_queue):
segmentation_module.eval()
for batch_data in loader:
# process data
batch_data = batch_data[0]
seg_label = as_numpy(batch_data['seg_label'][0])
img_resized_list = batch_data['img_data']
with torch.no_grad():
segSize = (seg_label.shape[0], seg_label.shape[1])
scores = torch.zeros(1, cfg.DATASET.num_class, segSize[0], segSize[1])
scores = async_copy_to(scores, gpu_id)
for img in img_resized_list:
feed_dict = batch_data.copy()
feed_dict['img_data'] = img
del feed_dict['img_ori']
del feed_dict['info']
feed_dict = async_copy_to(feed_dict, gpu_id)
# forward pass
scores_tmp = segmentation_module(feed_dict, segSize=segSize)
scores = scores + scores_tmp / len(cfg.DATASET.imgSizes)
_, pred = torch.max(scores, dim=1)
pred = as_numpy(pred.squeeze(0).cpu())
# calculate accuracy and SEND THEM TO MASTER
acc, pix = accuracy(pred, seg_label)
intersection, union = intersectionAndUnion(pred, seg_label, cfg.DATASET.num_class)
result_queue.put_nowait((acc, pix, intersection, union))
# visualization
if cfg.VAL.visualize:
visualize_result(
(batch_data['img_ori'], seg_label, batch_data['info']),
pred,
os.path.join(cfg.DIR, 'result')
)
def worker(cfg, gpu_id, start_idx, end_idx, result_queue):
torch.cuda.set_device(gpu_id)
# Dataset and Loader
dataset_val = ValDataset(
cfg.DATASET.root_dataset,
cfg.DATASET.list_val,
cfg.DATASET,
start_idx=start_idx, end_idx=end_idx)
loader_val = torch.utils.data.DataLoader(
dataset_val,
batch_size=cfg.VAL.batch_size,
shuffle=False,
collate_fn=user_scattered_collate,
num_workers=2)
# Network Builders
net_encoder = ModelBuilder.build_encoder(
arch=cfg.MODEL.arch_encoder.lower(),
fc_dim=cfg.MODEL.fc_dim,
weights=cfg.MODEL.weights_encoder)
net_decoder = ModelBuilder.build_decoder(
arch=cfg.MODEL.arch_decoder.lower(),
fc_dim=cfg.MODEL.fc_dim,
num_class=cfg.DATASET.num_class,
weights=cfg.MODEL.weights_decoder,
use_softmax=True)
crit = nn.NLLLoss(ignore_index=-1)
segmentation_module = SegmentationModule(net_encoder, net_decoder, crit)
segmentation_module.cuda()
# Main loop
evaluate(segmentation_module, loader_val, cfg, gpu_id, result_queue)
def main(cfg, gpus):
with open(cfg.DATASET.list_val, 'r') as f:
lines = f.readlines()
num_files = len(lines)
num_files_per_gpu = math.ceil(num_files / len(gpus))
pbar = tqdm(total=num_files)
acc_meter = AverageMeter()
intersection_meter = AverageMeter()
union_meter = AverageMeter()
result_queue = Queue(500)
procs = []
for idx, gpu_id in enumerate(gpus):
start_idx = idx * num_files_per_gpu
end_idx = min(start_idx + num_files_per_gpu, num_files)
proc = Process(target=worker, args=(cfg, gpu_id, start_idx, end_idx, result_queue))
print('gpu:{}, start_idx:{}, end_idx:{}'.format(gpu_id, start_idx, end_idx))
proc.start()
procs.append(proc)
# master fetches results
processed_counter = 0
while processed_counter < num_files:
if result_queue.empty():
continue
(acc, pix, intersection, union) = result_queue.get()
acc_meter.update(acc, pix)
intersection_meter.update(intersection)
union_meter.update(union)
processed_counter += 1
pbar.update(1)
for p in procs:
p.join()
# summary
iou = intersection_meter.sum / (union_meter.sum + 1e-10)
for i, _iou in enumerate(iou):
print('class [{}], IoU: {:.4f}'.format(i, _iou))
print('[Eval Summary]:')
print('Mean IoU: {:.4f}, Accuracy: {:.2f}%'
.format(iou.mean(), acc_meter.average()*100))
print('Evaluation Done!')
if __name__ == '__main__':
assert LooseVersion(torch.__version__) >= LooseVersion('0.4.0'), \
'PyTorch>=0.4.0 is required'
parser = argparse.ArgumentParser(
description="PyTorch Semantic Segmentation Validation"
)
parser.add_argument(
"--cfg",
default="config/ade20k-resnet50dilated-ppm_deepsup.yaml",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument(
"--gpus",
default="0-3",
help="gpus to use, e.g. 0-3 or 0,1,2,3"
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
cfg.merge_from_file(args.cfg)
cfg.merge_from_list(args.opts)
# cfg.freeze()
logger = setup_logger(distributed_rank=0) # TODO
logger.info("Loaded configuration file {}".format(args.cfg))
logger.info("Running with config:\n{}".format(cfg))
# absolute paths of model weights
cfg.MODEL.weights_encoder = os.path.join(
cfg.DIR, 'encoder_' + cfg.VAL.checkpoint)
cfg.MODEL.weights_decoder = os.path.join(
cfg.DIR, 'decoder_' + cfg.VAL.checkpoint)
assert os.path.exists(cfg.MODEL.weights_encoder) and \
os.path.exists(cfg.MODEL.weights_decoder), "checkpoint does not exitst!"
if not os.path.isdir(os.path.join(cfg.DIR, "result")):
os.makedirs(os.path.join(cfg.DIR, "result"))
# Parse gpu ids
gpus = parse_devices(args.gpus)
gpus = [x.replace('gpu', '') for x in gpus]
gpus = [int(x) for x in gpus]
main(cfg, gpus)