We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
大神,您好,我将GHMCLoss(layers.Layer)应用于结构型数据中,进行入侵检测 报错:ValueError: Could not interpret loss function identifier: 0.9288549423217773 请问需要怎么修改呢?
数据集是[353130 rows x 115 columns],有11类,用一维卷积,模型输入维度为 (None,11,1) x_train_cnn.shape ---(247191, 115, 1) x_validate_cnn.shape ---(35313, 115, 1) x_test_cnn.shape ---(70626, 115, 1)
模型代码: model = Sequential()
model.add(Conv1D(64, 4,strides=1, activation='relu',input_shape=(11, 1))) model.add(Conv1D(64, 2,strides=1, activation='relu',padding="same")) model.add(MaxPooling1D(pool_size=2,data_format='channels_last')) model.add(Conv1D(128, 2,strides=2, activation='relu',padding="same")) model.add(Conv1D(128, 2,strides=2, activation='relu',padding="same")) model.add(MaxPooling1D(pool_size=2,data_format='channels_last'))
model.add(GlobalAveragePooling1D()) model.add(Dropout(0.2))
model.add(Dense(11,activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy']) monitor = EarlyStopping(monitor='val_loss', min_delta=1e-3, patience=5, verbose=1, mode='auto') history=model.fit(x_train_cnn,y_train,validation_data=(x_validate_cnn,y_validate),batch_size=512, callbacks=[monitor],epochs=100)
请问gmh函数需要怎么改呢,我试了很多次不知道怎么改,本人编程基础比较薄弱,最近一直在解决这个难题,一直卡在这里,希望能得到您的回复,非常感谢。
The text was updated successfully, but these errors were encountered:
我写GHMLoss的时候主要是应用在Faster rcnn代码中,如果是一维度卷积,例如处理时序信号类型数据,如果不是图像处理,可以把class_weights直接去掉。
Sorry, something went wrong.
No branches or pull requests
大神,您好,我将GHMCLoss(layers.Layer)应用于结构型数据中,进行入侵检测
报错:ValueError: Could not interpret loss function identifier: 0.9288549423217773
请问需要怎么修改呢?
数据集是[353130 rows x 115 columns],有11类,用一维卷积,模型输入维度为
(None,11,1)
x_train_cnn.shape ---(247191, 115, 1)
x_validate_cnn.shape ---(35313, 115, 1)
x_test_cnn.shape ---(70626, 115, 1)
模型代码:
model = Sequential()
model.add(Conv1D(64, 4,strides=1, activation='relu',input_shape=(11, 1)))
model.add(Conv1D(64, 2,strides=1, activation='relu',padding="same"))
model.add(MaxPooling1D(pool_size=2,data_format='channels_last'))
model.add(Conv1D(128, 2,strides=2, activation='relu',padding="same"))
model.add(Conv1D(128, 2,strides=2, activation='relu',padding="same"))
model.add(MaxPooling1D(pool_size=2,data_format='channels_last'))
model.add(GlobalAveragePooling1D())
model.add(Dropout(0.2))
model.add(Dense(11,activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy'])
monitor = EarlyStopping(monitor='val_loss', min_delta=1e-3,
patience=5, verbose=1, mode='auto')
history=model.fit(x_train_cnn,y_train,validation_data=(x_validate_cnn,y_validate),batch_size=512,
callbacks=[monitor],epochs=100)
请问gmh函数需要怎么改呢,我试了很多次不知道怎么改,本人编程基础比较薄弱,最近一直在解决这个难题,一直卡在这里,希望能得到您的回复,非常感谢。
The text was updated successfully, but these errors were encountered: