-
Notifications
You must be signed in to change notification settings - Fork 1
/
setup.py
339 lines (297 loc) · 13.8 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License..
# ==============================================================================
"""TensorFlow is an open source machine learning framework for everyone.
[![Python](https://img.shields.io/pypi/pyversions/tensorflow.svg?style=plastic)](https://badge.fury.io/py/tensorflow)
[![PyPI](https://badge.fury.io/py/tensorflow.svg)](https://badge.fury.io/py/tensorflow)
TensorFlow is an open source software library for high performance numerical
computation. Its flexible architecture allows easy deployment of computation
across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters
of servers to mobile and edge devices.
Originally developed by researchers and engineers from the Google Brain team
within Google's AI organization, it comes with strong support for machine
learning and deep learning and the flexible numerical computation core is used
across many other scientific domains.
"""
import fnmatch
import os
import re
import sys
from setuptools import Command
from setuptools import find_packages
from setuptools import setup
from setuptools.command.install import install as InstallCommandBase
from setuptools.dist import Distribution
# This version string is semver compatible, but incompatible with pip.
# For pip, we will remove all '-' characters from this string, and use the
# result for pip.
# Also update tensorflow/tensorflow.bzl and
# tensorflow/core/public/version.h
_VERSION = '2.10.0'
# We use the same setup.py for all tensorflow_* packages and for the nightly
# equivalents (tf_nightly_*). The package is controlled from the argument line
# when building the pip package.
project_name = 'tensorflow'
if '--project_name' in sys.argv:
project_name_idx = sys.argv.index('--project_name')
project_name = sys.argv[project_name_idx + 1]
sys.argv.remove('--project_name')
sys.argv.pop(project_name_idx)
# Returns standard if a tensorflow-* package is being built, and nightly if a
# tf_nightly-* package is being built.
def standard_or_nightly(standard, nightly):
return nightly if 'tf_nightly' in project_name else standard
# All versions of TF need these packages. We indicate the widest possible range
# of package releases possible to be as up-to-date as possible as well as to
# accomodate as many pre-installed packages as possible.
# For packages that don't have yet a stable release, we pin using `~= 0.x` which
# means we accept any `0.y` version (y >= x) but not the first major release. We
# will need additional testing for that.
# NOTE: This assumes that all packages follow SemVer. If a package follows a
# different versioning scheme (e.g., PVP), we use different bound specifier and
# comment the versioning scheme.
REQUIRED_PACKAGES = [
'absl-py >= 1.0.0',
'astunparse >= 1.6.0',
# TODO(b/187981032): remove the constraint for 2.0 once the incompatibile
# issue is resolved.
'flatbuffers >= 1.12, <2',
# TODO(b/213222745) gast versions above 0.4.0 break TF's tests
'gast >= 0.2.1, <= 0.4.0',
'google_pasta >= 0.1.1',
'h5py >= 2.9.0',
'keras_preprocessing >= 1.1.1', # 1.1.0 needs tensorflow==1.7
'libclang >= 13.0.0',
'numpy >= 1.20',
'opt_einsum >= 2.3.2',
'packaging',
# TODO(b/182876485): Protobuf 3.20 results in linker errors on Windows
# Protobuf 4.0 is binary incompatible with what C++ TF uses.
# We need ~1 quarter to update properly.
# See also: https://github.com/tensorflow/tensorflow/issues/53234
# See also: https://github.com/protocolbuffers/protobuf/issues/9954
# See also: https://github.com/tensorflow/tensorflow/issues/56077
# This is a temporary patch for now, to patch previous TF releases.
'protobuf >= 3.9.2, < 3.20',
'setuptools',
'six >= 1.12.0',
'termcolor >= 1.1.0',
'typing_extensions >= 3.6.6',
'wrapt >= 1.11.0',
'tensorflow-io-gcs-filesystem >= 0.23.1',
# grpcio does not build correctly on big-endian machines due to lack of
# BoringSSL support.
# See https://github.com/tensorflow/tensorflow/issues/17882.
'grpcio >= 1.24.3, < 2.0' if sys.byteorder == 'little' else None,
# TensorFlow exposes the TF API for certain TF ecosystem packages like
# keras. When TF depends on those packages, the package version needs to
# match the current TF version. For tf_nightly, we install the nightly
# variant of each package instead, which must be one version ahead of the
# current release version. These also usually have "alpha" or "dev" in their
# version name.
# These are all updated during the TF release process.
standard_or_nightly('tensorboard >= 2.9, < 2.10', 'tb-nightly ~= 2.10.0.a'),
standard_or_nightly('tensorflow_estimator >= 2.9.0rc0, < 2.10',
'tf-estimator-nightly ~= 2.10.0.dev'),
standard_or_nightly('keras >= 2.9.0rc0, < 2.10',
'keras-nightly ~= 2.10.0.dev'),
]
REQUIRED_PACKAGES = [ p for p in REQUIRED_PACKAGES if p is not None ]
DOCLINES = __doc__.split('\n')
if project_name.endswith('-gpu'):
project_name_no_gpu = project_name[:-len('-gpu')]
_GPU_PACKAGE_NOTE = 'Note that %s package by default supports both CPU and '\
'GPU. %s has the same content and exists solely for backward '\
'compatibility. Please migrate to %s for GPU support.'\
% (project_name_no_gpu, project_name, project_name_no_gpu)
DOCLINES.append(_GPU_PACKAGE_NOTE)
# pylint: disable=line-too-long
CONSOLE_SCRIPTS = [
'toco_from_protos = tensorflow.lite.toco.python.toco_from_protos:main',
'tflite_convert = tensorflow.lite.python.tflite_convert:main',
'toco = tensorflow.lite.python.tflite_convert:main',
'saved_model_cli = tensorflow.python.tools.saved_model_cli:main',
'import_pb_to_tensorboard = tensorflow.python.tools.import_pb_to_tensorboard:main',
# We need to keep the TensorBoard command, even though the console script
# is now declared by the tensorboard pip package. If we remove the
# TensorBoard command, pip will inappropriately remove it during install,
# even though the command is not removed, just moved to a different wheel.
# We exclude it anyway if building tf_nightly.
standard_or_nightly('tensorboard = tensorboard.main:run_main', None),
'tf_upgrade_v2 = tensorflow.tools.compatibility.tf_upgrade_v2_main:main',
'estimator_ckpt_converter = '
'tensorflow_estimator.python.estimator.tools.checkpoint_converter:main',
]
CONSOLE_SCRIPTS = [ s for s in CONSOLE_SCRIPTS if s is not None ]
# pylint: enable=line-too-long
class BinaryDistribution(Distribution):
def has_ext_modules(self):
return True
class InstallCommand(InstallCommandBase):
"""Override the dir where the headers go."""
def finalize_options(self):
ret = InstallCommandBase.finalize_options(self) # pylint: disable=assignment-from-no-return
self.install_headers = os.path.join(self.install_platlib, 'tensorflow',
'include')
self.install_lib = self.install_platlib
return ret
class InstallHeaders(Command):
"""Override how headers are copied.
The install_headers that comes with setuptools copies all files to
the same directory. But we need the files to be in a specific directory
hierarchy for -I <include_dir> to work correctly.
"""
description = 'install C/C++ header files'
user_options = [
('install-dir=', 'd', 'directory to install header files to'),
('force', 'f', 'force installation (overwrite existing files)'),
]
boolean_options = ['force']
def initialize_options(self):
self.install_dir = None
self.force = 0
self.outfiles = []
def finalize_options(self):
self.set_undefined_options('install', ('install_headers', 'install_dir'),
('force', 'force'))
def mkdir_and_copy_file(self, header):
install_dir = os.path.join(self.install_dir, os.path.dirname(header))
# Get rid of some extra intervening directories so we can have fewer
# directories for -I
install_dir = re.sub('/google/protobuf_archive/src', '', install_dir)
# Copy external code headers into tensorflow/include.
# A symlink would do, but the wheel file that gets created ignores
# symlink within the directory hierarchy.
# NOTE(keveman): Figure out how to customize bdist_wheel package so
# we can do the symlink.
external_header_locations = [
'tensorflow/include/external/eigen_archive/',
'tensorflow/include/external/com_google_absl/',
]
for location in external_header_locations:
if location in install_dir:
extra_dir = install_dir.replace(location, '')
if not os.path.exists(extra_dir):
self.mkpath(extra_dir)
self.copy_file(header, extra_dir)
if not os.path.exists(install_dir):
self.mkpath(install_dir)
return self.copy_file(header, install_dir)
def run(self):
hdrs = self.distribution.headers
if not hdrs:
return
self.mkpath(self.install_dir)
for header in hdrs:
(out, _) = self.mkdir_and_copy_file(header)
self.outfiles.append(out)
def get_inputs(self):
return self.distribution.headers or []
def get_outputs(self):
return self.outfiles
def find_files(pattern, root):
"""Return all the files matching pattern below root dir."""
for dirpath, _, files in os.walk(root):
for filename in fnmatch.filter(files, pattern):
yield os.path.join(dirpath, filename)
so_lib_paths = [
i for i in os.listdir('.')
if os.path.isdir(i) and fnmatch.fnmatch(i, '_solib_*')
]
matches = []
for path in so_lib_paths:
matches.extend(['../' + x for x in find_files('*', path) if '.py' not in x])
if os.name == 'nt':
EXTENSION_NAME = 'python/_pywrap_tensorflow_internal.pyd'
else:
EXTENSION_NAME = 'python/_pywrap_tensorflow_internal.so'
headers = (
list(find_files('*.proto', 'tensorflow/compiler')) +
list(find_files('*.proto', 'tensorflow/core')) +
list(find_files('*.proto', 'tensorflow/python')) +
list(find_files('*.proto', 'tensorflow/python/framework')) +
list(find_files('*.def', 'tensorflow/compiler')) +
list(find_files('*.h', 'tensorflow/c')) +
list(find_files('*.h', 'tensorflow/cc')) +
list(find_files('*.h', 'tensorflow/compiler')) +
list(find_files('*.h.inc', 'tensorflow/compiler')) +
list(find_files('*.h', 'tensorflow/core')) +
list(find_files('*.h', 'tensorflow/lite/kernels/shim')) +
list(find_files('*.h', 'tensorflow/python')) +
list(find_files('*.h', 'tensorflow/python/client')) +
list(find_files('*.h', 'tensorflow/python/framework')) +
list(find_files('*.h', 'tensorflow/stream_executor')) +
list(find_files('*.h', 'google/com_google_protobuf/src')) +
list(find_files('*.inc', 'google/com_google_protobuf/src')) +
list(find_files('*', 'third_party/eigen3')) +
list(find_files('*.h', 'tensorflow/include/external/com_google_absl')) +
list(find_files('*.inc', 'tensorflow/include/external/com_google_absl')) +
list(find_files('*', 'tensorflow/include/external/eigen_archive')))
setup(
name=project_name,
version=_VERSION.replace('-', ''),
description=DOCLINES[0],
long_description='\n'.join(DOCLINES[2:]),
long_description_content_type='text/markdown',
url='https://www.tensorflow.org/',
download_url='https://github.com/tensorflow/tensorflow/tags',
author='Google Inc.',
author_email='packages@tensorflow.org',
# Contained modules and scripts.
packages=find_packages(),
entry_points={
'console_scripts': CONSOLE_SCRIPTS,
},
headers=headers,
install_requires=REQUIRED_PACKAGES,
# Add in any packaged data.
include_package_data=True,
package_data={
'tensorflow': [
EXTENSION_NAME,
] + matches,
},
zip_safe=False,
distclass=BinaryDistribution,
cmdclass={
'install_headers': InstallHeaders,
'install': InstallCommand,
},
# Supported Python versions
python_requires='>=3.7',
# PyPI package information.
classifiers=sorted([
'Development Status :: 5 - Production/Stable',
# TODO(angerson) Add IFTTT when possible
'Environment :: GPU :: NVIDIA CUDA :: 11.2',
'Intended Audience :: Developers',
'Intended Audience :: Education',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: Apache Software License',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
'Programming Language :: Python :: 3.10',
'Programming Language :: Python :: 3 :: Only',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Mathematics',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Software Development',
'Topic :: Software Development :: Libraries',
'Topic :: Software Development :: Libraries :: Python Modules',
]),
license='Apache 2.0',
keywords='tensorflow tensor machine learning',
)