Skip to content

Latest commit

 

History

History
41 lines (28 loc) · 1.52 KB

README.md

File metadata and controls

41 lines (28 loc) · 1.52 KB

Shuffle Vision Transformer: Lightweight, Fast and Efficient Recognition of Driver’s Facial Expression

This is the official repository for the paper "Shuffle Vision Transformer: Lightweight, Fast and Efficient Recognition of Driver’s Facial Expression".

ShuffViT-DFER Architecture

Datasets

Preprocessing

-For KMU-FED dataset: 'python preprocess_kmu.py' to save the data in .h5 format, then, "KMU.py" to split the data into 10 folds.
-For KDEF dataset: 'python preprocess_KDEF.py' to save the data in .h5 format, then, "KDEF.py" to split the data.

Train and Test model for all 10 fold

  • KMU-FED dataset: python 10fold.py
  • KDEF dataset: python combinedmodelkdef.py --model Ourmodel --bs 32 --lr 0.0001

plot confusion matrix

  • python confmatrixkmu.py --model Ourmodel
  • python confmatrixkdef.py --model Ourmodel

KMU-FED Accurary

We use 10-fold Cross validation in the experiment.

  • Model: ShuffViT-DFER ; Average accuracy: 97.273%

KDEF Accurary

  • Model: ShuffViT-DFER ; Accuracy: 92.441%

Confusion matrices