Shuffle Vision Transformer: Lightweight, Fast and Efficient Recognition of Driver’s Facial Expression
This is the official repository for the paper "Shuffle Vision Transformer: Lightweight, Fast and Efficient Recognition of Driver’s Facial Expression".
- KMU-FED dataset from https://cvpr.kmu.ac.kr/KMU-FED.html
- KDEF from https://kdef.se/download-2/index.html
-For KMU-FED dataset: 'python preprocess_kmu.py' to save the data in .h5 format, then, "KMU.py" to split the data into 10 folds.
-For KDEF dataset: 'python preprocess_KDEF.py' to save the data in .h5 format, then, "KDEF.py" to split the data.
- KMU-FED dataset: python 10fold.py
- KDEF dataset: python combinedmodelkdef.py --model Ourmodel --bs 32 --lr 0.0001
- python confmatrixkmu.py --model Ourmodel
- python confmatrixkdef.py --model Ourmodel
We use 10-fold Cross validation in the experiment.
- Model: ShuffViT-DFER ; Average accuracy: 97.273%
- Model: ShuffViT-DFER ; Accuracy: 92.441%