-
Notifications
You must be signed in to change notification settings - Fork 1
/
FIMU_ADXL345.cpp
executable file
·606 lines (533 loc) · 18.2 KB
/
FIMU_ADXL345.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/**************************************************************************
* *
* ADXL345 Driver for Arduino *
* *
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU License. *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU License V2 for more details. *
* *
***************************************************************************/
#include "FIMU_ADXL345.h"
#include <Wire.h>
#define TO_READ (6) // num of bytes we are going to read each time (two bytes for each axis)
ADXL345::ADXL345() {
status = ADXL345_OK;
error_code = ADXL345_NO_ERROR;
gains[0] = 0.00376390;
gains[1] = 0.00376009;
gains[2] = 0.00349265;
}
void ADXL345::init(int address) {
_dev_address = address;
powerOn();
}
void ADXL345::powerOn() {
//Turning on the ADXL345
//writeTo(ADXL345_POWER_CTL, 0);
//writeTo(ADXL345_POWER_CTL, 16);
writeTo(ADXL345_POWER_CTL, 8);
}
// Reads the acceleration into an array of three places
void ADXL345::readAccel(int *xyz){
readAccel(xyz, xyz + 1, xyz + 2);
}
// Reads the acceleration into three variable x, y and z
void ADXL345::readAccel(int *x, int *y, int *z) {
readFrom(ADXL345_DATAX0, TO_READ, _buff); //read the acceleration data from the ADXL345
// each axis reading comes in 10 bit resolution, ie 2 bytes. Least Significat Byte first!!
// thus we are converting both bytes in to one int
*x = (((int)_buff[1]) << 8) | _buff[0];
*y = (((int)_buff[3]) << 8) | _buff[2];
*z = (((int)_buff[5]) << 8) | _buff[4];
}
void ADXL345::get_Gxyz(float *xyz){
int i;
int xyz_int[3];
readAccel(xyz_int);
for(i=0; i<3; i++){
xyz[i] = xyz_int[i] * gains[i];
}
}
// Writes val to address register on device
void ADXL345::writeTo(byte address, byte val) {
Wire.beginTransmission(_dev_address); // start transmission to device
Wire.write(address); // send register address
Wire.write(val); // send value to write
Wire.endTransmission(); // end transmission
}
// Reads num bytes starting from address register on device in to _buff array
void ADXL345::readFrom(byte address, int num, byte _buff[]) {
Wire.beginTransmission(_dev_address); // start transmission to device
Wire.write(address); // sends address to read from
Wire.endTransmission(); // end transmission
Wire.beginTransmission(_dev_address); // start transmission to device
Wire.requestFrom(_dev_address, num); // request 6 bytes from device
int i = 0;
while(Wire.available()) // device may send less than requested (abnormal)
{
_buff[i] = Wire.read(); // receive a byte
i++;
}
if(i != num){
status = ADXL345_ERROR;
error_code = ADXL345_READ_ERROR;
}
Wire.endTransmission(); // end transmission
}
// Gets the range setting and return it into rangeSetting
// it can be 2, 4, 8 or 16
void ADXL345::getRangeSetting(byte* rangeSetting) {
byte _b;
readFrom(ADXL345_DATA_FORMAT, 1, &_b);
*rangeSetting = _b & B00000011;
}
// Sets the range setting, possible values are: 2, 4, 8, 16
void ADXL345::setRangeSetting(int val) {
byte _s;
byte _b;
switch (val) {
case 2:
_s = B00000000;
break;
case 4:
_s = B00000001;
break;
case 8:
_s = B00000010;
break;
case 16:
_s = B00000011;
break;
default:
_s = B00000000;
}
readFrom(ADXL345_DATA_FORMAT, 1, &_b);
_s |= (_b & B11101100);
writeTo(ADXL345_DATA_FORMAT, _s);
}
// gets the state of the SELF_TEST bit
bool ADXL345::getSelfTestBit() {
return getRegisterBit(ADXL345_DATA_FORMAT, 7);
}
// Sets the SELF-TEST bit
// if set to 1 it applies a self-test force to the sensor causing a shift in the output data
// if set to 0 it disables the self-test force
void ADXL345::setSelfTestBit(bool selfTestBit) {
setRegisterBit(ADXL345_DATA_FORMAT, 7, selfTestBit);
}
// Gets the state of the SPI bit
bool ADXL345::getSpiBit() {
return getRegisterBit(ADXL345_DATA_FORMAT, 6);
}
// Sets the SPI bit
// if set to 1 it sets the device to 3-wire mode
// if set to 0 it sets the device to 4-wire SPI mode
void ADXL345::setSpiBit(bool spiBit) {
setRegisterBit(ADXL345_DATA_FORMAT, 6, spiBit);
}
// Gets the state of the INT_INVERT bit
bool ADXL345::getInterruptLevelBit() {
return getRegisterBit(ADXL345_DATA_FORMAT, 5);
}
// Sets the INT_INVERT bit
// if set to 0 sets the interrupts to active high
// if set to 1 sets the interrupts to active low
void ADXL345::setInterruptLevelBit(bool interruptLevelBit) {
setRegisterBit(ADXL345_DATA_FORMAT, 5, interruptLevelBit);
}
// Gets the state of the FULL_RES bit
bool ADXL345::getFullResBit() {
return getRegisterBit(ADXL345_DATA_FORMAT, 3);
}
// Sets the FULL_RES bit
// if set to 1, the device is in full resolution mode, where the output resolution increases with the
// g range set by the range bits to maintain a 4mg/LSB scal factor
// if set to 0, the device is in 10-bit mode, and the range buts determine the maximum g range
// and scale factor
void ADXL345::setFullResBit(bool fullResBit) {
setRegisterBit(ADXL345_DATA_FORMAT, 3, fullResBit);
}
// Gets the state of the justify bit
bool ADXL345::getJustifyBit() {
return getRegisterBit(ADXL345_DATA_FORMAT, 2);
}
// Sets the JUSTIFY bit
// if sets to 1 selects the left justified mode
// if sets to 0 selects right justified mode with sign extension
void ADXL345::setJustifyBit(bool justifyBit) {
setRegisterBit(ADXL345_DATA_FORMAT, 2, justifyBit);
}
// Sets the THRESH_TAP byte value
// it should be between 0 and 255
// the scale factor is 62.5 mg/LSB
// A value of 0 may result in undesirable behavior
void ADXL345::setTapThreshold(int tapThreshold) {
tapThreshold = min(max(tapThreshold,0),255);
byte _b = byte (tapThreshold);
writeTo(ADXL345_THRESH_TAP, _b);
}
// Gets the THRESH_TAP byte value
// return value is comprised between 0 and 255
// the scale factor is 62.5 mg/LSB
int ADXL345::getTapThreshold() {
byte _b;
readFrom(ADXL345_THRESH_TAP, 1, &_b);
return int (_b);
}
// set/get the gain for each axis in Gs / count
void ADXL345::setAxisGains(float *_gains){
int i;
for(i = 0; i < 3; i++){
gains[i] = _gains[i];
}
}
void ADXL345::getAxisGains(float *_gains){
int i;
for(i = 0; i < 3; i++){
_gains[i] = gains[i];
}
}
// Sets the OFSX, OFSY and OFSZ bytes
// OFSX, OFSY and OFSZ are user offset adjustments in twos complement format with
// a scale factor of 15,6mg/LSB
// OFSX, OFSY and OFSZ should be comprised between
void ADXL345::setAxisOffset(int x, int y, int z) {
writeTo(ADXL345_OFSX, byte (x));
writeTo(ADXL345_OFSY, byte (y));
writeTo(ADXL345_OFSZ, byte (z));
}
// Gets the OFSX, OFSY and OFSZ bytes
void ADXL345::getAxisOffset(int* x, int* y, int*z) {
byte _b;
readFrom(ADXL345_OFSX, 1, &_b);
*x = int (_b);
readFrom(ADXL345_OFSY, 1, &_b);
*y = int (_b);
readFrom(ADXL345_OFSZ, 1, &_b);
*z = int (_b);
}
// Sets the DUR byte
// The DUR byte contains an unsigned time value representing the maximum time
// that an event must be above THRESH_TAP threshold to qualify as a tap event
// The scale factor is 625µs/LSB
// A value of 0 disables the tap/float tap funcitons. Max value is 255.
void ADXL345::setTapDuration(int tapDuration) {
tapDuration = min(max(tapDuration,0),255);
byte _b = byte (tapDuration);
writeTo(ADXL345_DUR, _b);
}
// Gets the DUR byte
int ADXL345::getTapDuration() {
byte _b;
readFrom(ADXL345_DUR, 1, &_b);
return int (_b);
}
// Sets the latency (latent register) which contains an unsigned time value
// representing the wait time from the detection of a tap event to the start
// of the time window, during which a possible second tap can be detected.
// The scale factor is 1.25ms/LSB. A value of 0 disables the float tap function.
// It accepts a maximum value of 255.
void ADXL345::setDoubleTapLatency(int floatTapLatency) {
byte _b = byte (floatTapLatency);
writeTo(ADXL345_LATENT, _b);
}
// Gets the Latent value
int ADXL345::getDoubleTapLatency() {
byte _b;
readFrom(ADXL345_LATENT, 1, &_b);
return int (_b);
}
// Sets the Window register, which contains an unsigned time value representing
// the amount of time after the expiration of the latency time (Latent register)
// during which a second valud tap can begin. The scale factor is 1.25ms/LSB. A
// value of 0 disables the float tap function. The maximum value is 255.
void ADXL345::setDoubleTapWindow(int floatTapWindow) {
floatTapWindow = min(max(floatTapWindow,0),255);
byte _b = byte (floatTapWindow);
writeTo(ADXL345_WINDOW, _b);
}
// Gets the Window register
int ADXL345::getDoubleTapWindow() {
byte _b;
readFrom(ADXL345_WINDOW, 1, &_b);
return int (_b);
}
// Sets the THRESH_ACT byte which holds the threshold value for detecting activity.
// The data format is unsigned, so the magnitude of the activity event is compared
// with the value is compared with the value in the THRESH_ACT register. The scale
// factor is 62.5mg/LSB. A value of 0 may result in undesirable behavior if the
// activity interrupt is enabled. The maximum value is 255.
void ADXL345::setActivityThreshold(int activityThreshold) {
activityThreshold = min(max(activityThreshold,0),255);
byte _b = byte (activityThreshold);
writeTo(ADXL345_THRESH_ACT, _b);
}
// Gets the THRESH_ACT byte
int ADXL345::getActivityThreshold() {
byte _b;
readFrom(ADXL345_THRESH_ACT, 1, &_b);
return int (_b);
}
// Sets the THRESH_INACT byte which holds the threshold value for detecting inactivity.
// The data format is unsigned, so the magnitude of the inactivity event is compared
// with the value is compared with the value in the THRESH_INACT register. The scale
// factor is 62.5mg/LSB. A value of 0 may result in undesirable behavior if the
// inactivity interrupt is enabled. The maximum value is 255.
void ADXL345::setInactivityThreshold(int inactivityThreshold) {
inactivityThreshold = min(max(inactivityThreshold,0),255);
byte _b = byte (inactivityThreshold);
writeTo(ADXL345_THRESH_INACT, _b);
}
// Gets the THRESH_INACT byte
int ADXL345::getInactivityThreshold() {
byte _b;
readFrom(ADXL345_THRESH_INACT, 1, &_b);
return int (_b);
}
// Sets the TIME_INACT register, which contains an unsigned time value representing the
// amount of time that acceleration must be less thant the value in the THRESH_INACT
// register for inactivity to be declared. The scale factor is 1sec/LSB. The value must
// be between 0 and 255.
void ADXL345::setTimeInactivity(int timeInactivity) {
timeInactivity = min(max(timeInactivity,0),255);
byte _b = byte (timeInactivity);
writeTo(ADXL345_TIME_INACT, _b);
}
// Gets the TIME_INACT register
int ADXL345::getTimeInactivity() {
byte _b;
readFrom(ADXL345_TIME_INACT, 1, &_b);
return int (_b);
}
// Sets the THRESH_FF register which holds the threshold value, in an unsigned format, for
// free-fall detection. The root-sum-square (RSS) value of all axes is calculated and
// compared whith the value in THRESH_FF to determine if a free-fall event occured. The
// scale factor is 62.5mg/LSB. A value of 0 may result in undesirable behavior if the free-fall
// interrupt is enabled. The maximum value is 255.
void ADXL345::setFreeFallThreshold(int freeFallThreshold) {
freeFallThreshold = min(max(freeFallThreshold,0),255);
byte _b = byte (freeFallThreshold);
writeTo(ADXL345_THRESH_FF, _b);
}
// Gets the THRESH_FF register.
int ADXL345::getFreeFallThreshold() {
byte _b;
readFrom(ADXL345_THRESH_FF, 1, &_b);
return int (_b);
}
// Sets the TIME_FF register, which holds an unsigned time value representing the minimum
// time that the RSS value of all axes must be less than THRESH_FF to generate a free-fall
// interrupt. The scale factor is 5ms/LSB. A value of 0 may result in undesirable behavior if
// the free-fall interrupt is enabled. The maximum value is 255.
void ADXL345::setFreeFallDuration(int freeFallDuration) {
freeFallDuration = min(max(freeFallDuration,0),255);
byte _b = byte (freeFallDuration);
writeTo(ADXL345_TIME_FF, _b);
}
// Gets the TIME_FF register.
int ADXL345::getFreeFallDuration() {
byte _b;
readFrom(ADXL345_TIME_FF, 1, &_b);
return int (_b);
}
bool ADXL345::isActivityXEnabled() {
return getRegisterBit(ADXL345_ACT_INACT_CTL, 6);
}
bool ADXL345::isActivityYEnabled() {
return getRegisterBit(ADXL345_ACT_INACT_CTL, 5);
}
bool ADXL345::isActivityZEnabled() {
return getRegisterBit(ADXL345_ACT_INACT_CTL, 4);
}
bool ADXL345::isInactivityXEnabled() {
return getRegisterBit(ADXL345_ACT_INACT_CTL, 2);
}
bool ADXL345::isInactivityYEnabled() {
return getRegisterBit(ADXL345_ACT_INACT_CTL, 1);
}
bool ADXL345::isInactivityZEnabled() {
return getRegisterBit(ADXL345_ACT_INACT_CTL, 0);
}
void ADXL345::setActivityX(bool state) {
setRegisterBit(ADXL345_ACT_INACT_CTL, 6, state);
}
void ADXL345::setActivityY(bool state) {
setRegisterBit(ADXL345_ACT_INACT_CTL, 5, state);
}
void ADXL345::setActivityZ(bool state) {
setRegisterBit(ADXL345_ACT_INACT_CTL, 4, state);
}
void ADXL345::setInactivityX(bool state) {
setRegisterBit(ADXL345_ACT_INACT_CTL, 2, state);
}
void ADXL345::setInactivityY(bool state) {
setRegisterBit(ADXL345_ACT_INACT_CTL, 1, state);
}
void ADXL345::setInactivityZ(bool state) {
setRegisterBit(ADXL345_ACT_INACT_CTL, 0, state);
}
bool ADXL345::isActivityAc() {
return getRegisterBit(ADXL345_ACT_INACT_CTL, 7);
}
bool ADXL345::isInactivityAc(){
return getRegisterBit(ADXL345_ACT_INACT_CTL, 3);
}
void ADXL345::setActivityAc(bool state) {
setRegisterBit(ADXL345_ACT_INACT_CTL, 7, state);
}
void ADXL345::setInactivityAc(bool state) {
setRegisterBit(ADXL345_ACT_INACT_CTL, 3, state);
}
bool ADXL345::getSuppressBit(){
return getRegisterBit(ADXL345_TAP_AXES, 3);
}
void ADXL345::setSuppressBit(bool state) {
setRegisterBit(ADXL345_TAP_AXES, 3, state);
}
bool ADXL345::isTapDetectionOnX(){
return getRegisterBit(ADXL345_TAP_AXES, 2);
}
void ADXL345::setTapDetectionOnX(bool state) {
setRegisterBit(ADXL345_TAP_AXES, 2, state);
}
bool ADXL345::isTapDetectionOnY(){
return getRegisterBit(ADXL345_TAP_AXES, 1);
}
void ADXL345::setTapDetectionOnY(bool state) {
setRegisterBit(ADXL345_TAP_AXES, 1, state);
}
bool ADXL345::isTapDetectionOnZ(){
return getRegisterBit(ADXL345_TAP_AXES, 0);
}
void ADXL345::setTapDetectionOnZ(bool state) {
setRegisterBit(ADXL345_TAP_AXES, 0, state);
}
bool ADXL345::isActivitySourceOnX(){
return getRegisterBit(ADXL345_ACT_TAP_STATUS, 6);
}
bool ADXL345::isActivitySourceOnY(){
return getRegisterBit(ADXL345_ACT_TAP_STATUS, 5);
}
bool ADXL345::isActivitySourceOnZ(){
return getRegisterBit(ADXL345_ACT_TAP_STATUS, 4);
}
bool ADXL345::isTapSourceOnX(){
return getRegisterBit(ADXL345_ACT_TAP_STATUS, 2);
}
bool ADXL345::isTapSourceOnY(){
return getRegisterBit(ADXL345_ACT_TAP_STATUS, 1);
}
bool ADXL345::isTapSourceOnZ(){
return getRegisterBit(ADXL345_ACT_TAP_STATUS, 0);
}
bool ADXL345::isAsleep(){
return getRegisterBit(ADXL345_ACT_TAP_STATUS, 3);
}
bool ADXL345::isLowPower(){
return getRegisterBit(ADXL345_BW_RATE, 4);
}
void ADXL345::setLowPower(bool state) {
setRegisterBit(ADXL345_BW_RATE, 4, state);
}
float ADXL345::getRate(){
byte _b;
readFrom(ADXL345_BW_RATE, 1, &_b);
_b &= B00001111;
return (pow(2,((int) _b)-6)) * 6.25;
}
void ADXL345::setRate(float rate){
byte _b,_s;
int v = (int) (rate / 6.25);
int r = 0;
while (v >>= 1)
{
r++;
}
if (r <= 9) {
readFrom(ADXL345_BW_RATE, 1, &_b);
_s = (byte) (r + 6) | (_b & B11110000);
writeTo(ADXL345_BW_RATE, _s);
}
}
void ADXL345::set_bw(byte bw_code){
if((bw_code < ADXL345_BW_3) || (bw_code > ADXL345_BW_1600)){
status = false;
error_code = ADXL345_BAD_ARG;
}
else{
writeTo(ADXL345_BW_RATE, bw_code);
}
}
byte ADXL345::get_bw_code(){
byte bw_code;
readFrom(ADXL345_BW_RATE, 1, &bw_code);
return bw_code;
}
byte ADXL345::getInterruptSource() {
byte _b;
readFrom(ADXL345_INT_SOURCE, 1, &_b);
return _b;
}
bool ADXL345::getInterruptSource(byte interruptBit) {
return getRegisterBit(ADXL345_INT_SOURCE,interruptBit);
}
bool ADXL345::getInterruptMapping(byte interruptBit) {
return getRegisterBit(ADXL345_INT_MAP,interruptBit);
}
// Set the mapping of an interrupt to pin1 or pin2
// eg: setInterruptMapping(ADXL345_INT_DOUBLE_TAP_BIT,ADXL345_INT2_PIN);
void ADXL345::setInterruptMapping(byte interruptBit, bool interruptPin) {
setRegisterBit(ADXL345_INT_MAP, interruptBit, interruptPin);
}
bool ADXL345::isInterruptEnabled(byte interruptBit) {
return getRegisterBit(ADXL345_INT_ENABLE,interruptBit);
}
void ADXL345::setInterrupt(byte interruptBit, bool state) {
setRegisterBit(ADXL345_INT_ENABLE, interruptBit, state);
}
void ADXL345::setRegisterBit(byte regAdress, int bitPos, bool state) {
byte _b;
readFrom(regAdress, 1, &_b);
if (state) {
_b |= (1 << bitPos); // forces nth bit of _b to be 1. all other bits left alone.
}
else {
_b &= ~(1 << bitPos); // forces nth bit of _b to be 0. all other bits left alone.
}
writeTo(regAdress, _b);
}
bool ADXL345::getRegisterBit(byte regAdress, int bitPos) {
byte _b;
readFrom(regAdress, 1, &_b);
return ((_b >> bitPos) & 1);
}
// print all register value to the serial ouptut, which requires it to be setup
// this can be used to manually to check the current configuration of the device
void ADXL345::printAllRegister() {
byte _b;
Serial.print("0x00: ");
readFrom(0x00, 1, &_b);
print_byte(_b);
Serial.println("");
int i;
for (i=29;i<=57;i++){
Serial.print("0x");
Serial.print(i, HEX);
Serial.print(": ");
readFrom(i, 1, &_b);
print_byte(_b);
Serial.println("");
}
}
void print_byte(byte val){
int i;
Serial.print("B");
for(i=7; i>=0; i--){
Serial.print(val >> i & 1, BIN);
}
}