-
Notifications
You must be signed in to change notification settings - Fork 9
/
fields.jl
376 lines (297 loc) · 8.49 KB
/
fields.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# This file is a part of JuliaFEM.
# License is MIT: see https://github.com/JuliaFEM/FEMBase.jl/blob/master/LICENSE
"""
AbstractField
Abstract supertype for all fields in JuliaFEM.
"""
abstract type AbstractField end
function length(f::F) where F<:AbstractField
return length(f.data)
end
function size(f::F) where F<:AbstractField
return size(f.data)
end
function ==(x::F, y) where F<:AbstractField
return ==(x.data, y)
end
function ==(x, y::F) where F<:AbstractField
return ==(x, y.data)
end
function ==(x::F, y::F) where F<:AbstractField
return ==(x.data, y.data)
end
function getindex(f::F, i::Int) where F<:AbstractField
return getindex(f.data, i)
end
function interpolate_field(field::AbstractField, ::Any)
return field.data
end
function update_field!(field::AbstractField, data)
field.data = data
end
"""
DCTI{T} <: AbstractField
Discrete, constant, time-invariant field.
This field is constant in both spatial direction and time direction,
i.e. df/dX = 0 and df/dt = 0.
# Example
```jldoctest
julia> DCTI(1)
FEMBase.DCTI{Int64}(1)
```
"""
mutable struct DCTI{T} <: AbstractField
data :: T
end
function getindex(field::DCTI, ::Int)
return field.data
end
"""
DVTI{N,T} <: AbstractField
Discrete, variable, time-invariant field.
This is constant in time direction, but not in spatial direction, i.e. df/dt = 0
but df/dX != 0. The basic structure of data is `Tuple`, and it is implicitly
assumed that length of field matches to the number of shape functions, so that
interpolation in spatial direction works.
# Example
```jldoctest
julia> DVTI(1, 2, 3)
FEMBase.DVTI{3,Int64}((1, 2, 3))
```
"""
mutable struct DVTI{N,T} <: AbstractField
data :: NTuple{N,T}
end
function DVTI(data...)
return DVTI(data)
end
"""
DCTV{T} <: AbstractField
Discrete, constant, time variant field. This type of field can change in time
direction but not in spatial direction.
# Example
Field having value 5 at time 0.0 and value 10 at time 1.0:
```jldoctest
julia> DCTV(0.0 => 5, 1.0 => 10)
FEMBase.DCTV{Int64}(Pair{Float64,Int64}[0.0=>5, 1.0=>10])
```
"""
mutable struct DCTV{T} <: AbstractField
data :: Vector{Pair{Float64,T}}
end
function DCTV(data::Pair{Float64,T}...) where T
return DCTV(collect(data))
end
function update_field!(f::DCTV, data::Pair{Float64, T}) where T
if isapprox(last(f.data).first, data.first)
f.data[end] = data
else
push!(f.data, data)
end
end
function interpolate_field(field::DCTV, time)
time < first(field.data).first && return first(field.data).second
time > last(field.data).first && return last(field.data).second
for i=reverse(1:length(field))
isapprox(field.data[i].first, time) && return field.data[i].second
end
for i=length(field.data):-1:2
t0 = field.data[i-1].first
t1 = field.data[i].first
if t0 < time < t1
y0 = field.data[i-1].second
y1 = field.data[i].second
dy = y1-y0
dt = t1-t0
return y0 + (time-t0)*dy/dt
end
end
end
"""
DVTV{N,T} <: AbstractField
Discrete, variable, time variant field. The most general discrete field can
change in both temporal and spatial direction.
# Example
```jldoctest
julia> DVTV(0.0 => (1, 2), 1.0 => (2, 3))
FEMBase.DVTV{2,Int64}(Pair{Float64,Tuple{Int64,Int64}}[0.0=>(1, 2), 1.0=>(2, 3)])
```
"""
mutable struct DVTV{N,T} <: AbstractField
data :: Vector{Pair{Float64,NTuple{N,T}}}
end
function DVTV(data::Pair{Float64,NTuple{N,T}}...) where {N,T}
return DVTV(collect(data))
end
function update_field!(f::DVTV, data::Pair{Float64, NTuple{N,T}}) where {N,T}
if isapprox(last(f.data).first, data.first)
f.data[end] = data
else
push!(f.data, data)
end
end
function interpolate_field(field::DVTV{N,T}, time) where {N,T}
time < first(field.data).first && return first(field.data).second
time > last(field.data).first && return last(field.data).second
for i=reverse(1:length(field))
isapprox(field.data[i].first, time) && return field.data[i].second
end
for i=length(field.data):-1:2
t0 = field.data[i-1].first
t1 = field.data[i].first
if t0 < time < t1
y0 = field.data[i-1].second
y1 = field.data[i].second
dt = t1-t0
return map((a,b) -> a + (time-t0)*(b-a)/dt, y0, y1)
end
end
end
"""
CVTV <: AbstractField
Continuous, variable, time variant field.
# Example
```jldoctest
julia> f = CVTV((xi,t) -> xi*t)
FEMBase.CVTV(#1)
```
"""
mutable struct CVTV <: AbstractField
data :: Function
end
function (f::CVTV)(xi, time)
return f.data(xi, time)
end
"""
DVTId(X::Dict)
Discrete, variable, time invariant dictionary field.
"""
mutable struct DVTId{T} <: AbstractField
data :: Dict{Int, T}
end
function update_field!(field::DVTId{T}, data::Dict{Int, T}) where T
merge!(field.data, data)
end
"""
DVTVd(time => data::Dict)
Discrete, variable, time variant dictionary field.
"""
mutable struct DVTVd{T} <: AbstractField
data :: Vector{Pair{Float64,Dict{Int,T}}}
end
function DVTVd(data::Pair{Float64,Dict{Int,T}}...) where T
return DVTVd(collect(data))
end
function interpolate_field(field::DVTVd{T}, time) where T
time >= last(field.data).first && return last(field.data).second
time <= first(field.data).first && return first(field.data).second
for i=reverse(1:length(field))
isapprox(field.data[i].first, time) && return field.data[i].second
end
for i=length(field.data):-1:2
t0 = field.data[i-1].first
t1 = field.data[i].first
if t0 < time < t1
y0 = field.data[i-1].second
y1 = field.data[i].second
f = (time-t0)/(t1-t0)
new_data = empty(y0)
for i in keys(y0)
new_data[i] = f*y0[i] + (1-f)*y1[i]
end
return new_data
end
end
end
function update_field!(f::DVTVd, data::Pair{Float64,Dict{Int,T}}) where T
if isapprox(last(f.data).first, data.first)
f.data[end] = data
else
push!(f.data, data)
end
end
function new_field(data)
return DCTI(data)
end
function new_field(data...)
return DVTI(data)
end
function new_field(data::NTuple{N,T}) where {N,T}
return DVTI(data)
end
function new_field(data::Pair{Float64,T}...) where T
return DCTV(collect(data))
end
function new_field(data::Pair{Float64,NTuple{N,T}}...) where {N,T}
return DVTV(collect(data))
end
function new_field(data::Function)
return CVTV(data)
end
function new_field(data::Pair{Int, T}...) where T
return DVTId(Dict(data))
end
function new_field(data::Pair{Float64, NTuple{N, Pair{Int, T}}}...) where {N,T}
return DVTVd(collect(t => Dict(d) for (t, d) in data))
end
function new_field(data::Dict{Int,T}) where T
return DVTId(data)
end
function new_field(data::Pair{Float64, Dict{Int, T}}...) where T
return DVTVd(collect(data))
end
"""
field(x)
Create new field. Field type is deduced from data type.
"""
function field(data...)
return new_field(data...)
end
"""
interpolate(field, time)
Interpolate field in time direction.
# Examples
For time invariant fields [`DCTI`](@ref), [`DVTI`](@ref), [`DVTId`](@ref)
solution is trivially the data inside field as fields does not depend from
the time:
```jldoctest
julia> a = field(1.0)
FEMBase.DCTI{Float64}(1.0)
julia> interpolate(a, 0.0)
1.0
```
```jldoctest
julia> a = field((1.0, 2.0))
FEMBase.DVTI{2,Float64}((1.0, 2.0))
julia> interpolate(a, 0.0)
(1.0, 2.0)
```
```jldoctest
julia> a = field(1=>1.0, 2=>2.0)
FEMBase.DVTId{Float64}(Dict(2=>2.0,1=>1.0))
julia> interpolate(a, 0.0)
Dict{Int64,Float64} with 2 entries:
2 => 2.0
1 => 1.0
```
DVTId trivial solution is returned. For time variant fields DCTV, DVTV, DVTVd
linear interpolation is performed.
# Other notes
First algorithm checks that is time out of range, i.e. time is smaller than
time of first frame or larger than last frame. If that is the case, return
first or last frame. Secondly algorithm finds is given time exact match to
time of some frame and return that frame. At last, we find correct bin so
that t0 < time < t1 and use linear interpolation.
"""
function interpolate(field::AbstractField, time)
return interpolate_field(field, time)
end
"""
interpolate(a, b)
A helper function for interpolate routines. Given iterables `a` and `b`,
calculate c = aᵢbᵢ. Length of `a` can be less than `b`, but not vice versa.
"""
function interpolate(a, b)
@assert length(a) <= length(b)
return sum(a[i]*b[i] for i=1:length(a))
end